.

CALCULATION COVER SHEET

Project:	INEEL V-Ta	ank Remediation Pro	ject		Number of Sheets:				
Site:	Test Area N	Test Area North, Idaho Falls, Idaho.							
Calculation Number:	ABQ11-CE								
Subject:	INEEL/BBV	VI Utility Location and	d Type						
Rev #:	Date:	Revision:	Calculated by:	Checked:	Approved:				
RAA	5-11-01	90% Design	Chris Ehrsam	Dan Brennecke	Berg Keshian				
RAB	9-27-01	Draft Final	Chris Ehrsam	Dan Brennecke	J- Flat fatro				

Problem Statement:

Locate all utilities with the area, this includes abandoned in place utilities. Locate the utility by a horizontal and vertical tie to reference point such as a building, the natural ground or a significant structure. Find the material used for these utilities, ie concrete, cast iron, or stainless steel.

Method of Solution: Review Autocad and PDF drawings provided by INEEL and site visit.

Assumptions:

Not all Utilities lines are shown on drawings. The utilities shown on drawings may or may not be as shown and must be field verified.

Sources of Formulas and References:

Autocad and PDF Drawings provided by INEEL, and site visit.

Calculation:

Locate and map utility location and material on design drawings.

Summary of Results:

The location and material type for all utilities was not available on the drawings provided.

The drawings are inconsistent in showing the location of utilities within the area of concern. Often the lines representing a utility are not dimensioned to a building or significant structure therefore leaving room for error. Most of the drawings are in PDF format, therefore scaling off the drawings was not feasible. The drawings provided do not show, gas, propane, electric, or telephone lines.

It is recommended that utility locates be performed prior to excavation, that excavation be done in increments no greater than 12 inches at a time, and that a spotter be provided during remediation/excavation to lessen the chance of breaking lines during excavation.

CLIENT/SUBJECT		W.O. NO			
			TASK NO		
PREPARED BY	DEPT	DATE	. APPROVED BY		
MATH CHECK BY	DEPT	DATE			
METHOD REV. BY	DEPT	DATE	DEPTDATE		

This drawing shows the location and side of contaminated waste (wc) and concentrated. Contoninated waste CLAIBORNE

This drawing shows the location of Fire woter and Utility Water site Plan.

DH FOARINDOBLE		LOCKHEED MARTIN				
REQUESTER						
0ESIQ1:		TAN/TSF AREA				
DRAMN EE THO	MAS	FIRE WATER &				
PROJECT NO.	015566	UTILITY WATER				
SPEC CODE		SITE PLAN				
FOR REVIEW/APPRI SEE DAR NO.	ZERUTANCIE JAVO	98 CACE COOK WASK COOK NAMED DWG-423185 9				
EFFECTIVE DATE:		SCALE: 1"=100"-0" SECTI] OF 6				

Drawing shows Radioactile liquid work underground pipping.

	SUSTAINER .	DESIGNATION CONTRACTOR	
CLIENT/SUBJECT			W.O. NO
			TACK NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE

Drawing Shows Waste lines DENTIFICATION

This drawing shows the horizontal and vertical location of V, V2 on V3 tanks

This drawing shows the horizontal and vertical location of Vi, Vz, V3 and Vg fanks and location of valves from building to Y. Tanks

Plan View and cross. section of V.9.

This drawing includes the dimension, material, opening locations for V, , Vz, V, and Vq

034 04/4 33/499 /04894	A N P AMPENDER & MANTENANCE ANDA LIQUID WASTE TREATMENT PLANT 646 VESSEL DETAILS & OMERITATIONS	
# com Grants 17-17 2 2 2 2 2 2 2 2 2	THE RALPH M. PARSONS COMPANY	
and and	U. S. ATOMIC ENERGY COMMISSION	
MMA HO SCALE MMA /2-Ea-5Tu	902-3-ANP-616-P-302	

	MANAGERS	DESCREPT TORSULTANTS	SHEET of
CLIENT/SUBJECT			W.O. NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE

This drawing show location of valves, dimensions and elevation of lines for V, , Vz and V3 tanks.

	A MARCHANICA VICTORIA MORNINA Sec. of 12 days of 12 days of 12 days A 12 days of 12 days of 12 days A 12 days of 12 days of 12 days M 15-555 A3 SUIL P M 10 days M 10 days
	A R P ASSESSELY & MANTERANCE AREA LIQUID WASTE TREATMENT PLANT 616 PIMMS "ECTIONS
Paris 3:44	THE RALPH M. PARSONS COMPANY
- FE 1100	U. S. ATOMIC ENERGY COMMISSION MAND OPPLATIONS OFFICE MAND FALLS. MAND
MATE (1-20-52	902-3-ANP-616-P301

Drawing shows size & location or site utilities.

Dimensions of tanks, V-9 and Valve Pit #1.

DESIGN SUPPLY		6. 7. 79		KA	VSIN	E F.	?	FARIT EMERGE 20 LINES OF DATE F.A. PRI SEEP GROLING, CALFOR	N. SMC. N.	
CHECKED T. CHENG		6-1-19	U.S. DEPARTMENT OF ENERGY						ERGY	
ON ALLINA	-,	6-7-79 8-10-79	1			OHAG	OPERATI	ONS OFFICE		
D. F. WALE	Aan I	10-12-7)	-	TAN	DAD	1040	TIVE	1 101 110	WACTE	_
SAFETY O. P HALL		10-15-73	Ė					LIQUID		-
PROJ. MG	K	10-23-79	_	510R	AGE	AND	1 144	MOFER	SYSTEM	-
R.E. OHL		10-24-79	-			SIT	E I	PLAN		_
			F (1	NCLUD	ING F				& UTILITIES) =
SCALE	HOLIASI		5126		NOEX COOK			DA	AWING HUMBER	_
I" = 20'	11.3.	with the		0340	3 0 0	5 1	4 8 6	138651	1-C	
	L					1		SHEET		_

FIRE WIATER LINE ABANDONED IN PLACE.

ITEM	SIZE	PRESS	SER //CE	MATL.
· A			PUMP 500" DN	5.5.
В	 ق	500	LOAD NG	5. 5
ξ.	4	53 '	PLVID SETUZN	5. S.
. (a)	2	> 2*	CAUSTIC INLET	5. 5
É	2	5c.*	HEA LEA LE' COMM.	5. 5.
F	· ·	ייר -	SPARE	.5. 5
6	3	50 *	VENT	5.5.
· • •	20		MANHOLE W/SLND FLG.	5.5

NOTE:
PROJECTION OF ALL FLED.NOTTLES
SHALL BE G" UNLESS OTHERWISE
SHOWN.

VESSEL SHALL BE FABRICATED FOR 10,000 GAL. CAPACITY.

V-1 to V-3 (INCL) - COLLECTING TANKS - No. REQD. 3

17	EM	SIZE	PRESS	SERVICE	MATL.
7	A)	6'	150	INLET	5.5.
7	8)	3"	1504	INLET	5.5
7	c)	6.	150	OUTLET	5.5
	a)	.6	:50*	VENT	5.5.

NOTE: VESSEL SHALL BE FARRICATED FOR 400 GAL. CAPACITY.

<u>V-9</u>

SUMP

No REQD. 1

CALCULATION COVER SHEET

Project:	INEEL V-Tank Remediation Project						Number of Sheets:
Site:	INEEL Test	Area North, Ida	ho Falls, Idal	סר			
Calculation Number:	ABQ12 – CE	CE008 Work Order 12393.002.001 Number:					01
Subject:	Water Filtration						
Rev#	ev # Date: Revision: Calculated by: Checked by:		Approved:				
RAA	4/31/01	90%	Art Desros	iers	Berg Ke	eshian	
RAB	6/14/01	90%	Art Desros	Desrosiers Berg Keshian		eshian	Berg Keshian
RAC	9/28/01	Draft Final	George Pri	ior	Berg Ke	eshian	Daniel Brennecke
RAD	10/22/01	Draft Final Polish	George Pri	ior	Berg Ke	eshian	Jim Lockhart

Assumptions:

The loading capacity of granular activated carbon (GAC) was based on published isotherms found in the EPA Tractability Manual, EPA-600/8-80-042a. The quantity of GAC required to remove each compound was calculated and totaled for all compounds to define the total quantity of GAC required. 55-gallon size GAC units will be used with a maximum flow rating of 10 gpm. Two trains with two units in series for each train will be used. Incidental removal of mercury may occur on the GAC, but for purpose of this analysis it was assumed that no mercury removal will occur.

Heavy metals will be removed with ion exchange. The loading will include all cat ions except sodium and hydrogen. Sufficient resin will be provided to treat the water without regeneration. The resin will then be disposed with the heavy metals and radionuclides attached.

Sources of Data:

ABQ03-HP003-RAC
ABQ04-HP004-RAC
GWTF Radionuclide Removal Evaluation (June 17, 1996)
INEL-95/0421 Rev. 0 October 1995
RD/RA WP Appendices H & G – Sampling data for the V Tanks
www.generalcarbon.com
www.usfilter.com

Calculation:

Sample calculations are presented herein to show the methodology used and the results of all calculations are summarized on calculation sheets (Attachment 1) and in the mass balance charts included with the process description in Attachment.

```
Water treatment from Tank V-1
```

```
Volume = 644 gal

TCE level = 0.16 mg/L

(644)(10^{-6})(0.16)(8.34) = 8.59(10^{-4}) lb
```

```
Isotherm capacity at 0.01 mg/L = 0.002 lb/lb GAC 8.59(10^{-4})/0.002 = 0.43 lb GAC used Lead = 0.84 mg/l
```

```
CaCO<sub>3</sub> equivalent: 0.84(100/207) = 0.406 mg/l as CaCO<sub>3</sub>
```

Radionuclide Conversion

```
Mg/L = (pCi/L)*10^{-12} (Ci/pCi)*10^3 (mg/g)/Specific Activity (Ci/g)

(1.89E + 04)(10^{-12})(10^3)/6.17E-03 = 0.031 mg/L

Equiv. CaCO_3 = 0.0031(100/234) = 0.0013 mg/L

U-234 = 1.89E + 04 pCi/L
```

```
Specific Activity = 6.17E-03
```

Composite for drum filling for Lead

V-1: (1040 gal)(0.84 mg/L) = 873.6

V-9: (320) (0.942) = <u>301.4</u>

1174.0

Total Volume = 3706 1174.0/3706 = 0.317 mg/L

Contingency:

Two trains of GAC units will be operated in parallel to provide added removal of organics in the event that organics in the sludge become soluble during the removal process.

Procedures:

The TOC at the exit of the first bed will be monitored to allow changing beds that are prematurely exhausted. The liquid phase waste will be filtered through oil and grease filters, activated carbon and ion exchanged, then pumped into water HICs. The water will be transferred into a temporary storage tank and sampled for compliance with LDRs. Any additional treatment that is required or desired will be accomplished with a backup treatment system which can be configured with activated carbon and ion exchange, as required.

Conclusion:

This calculation determines the quantity of filtration material required to remove contaminants in the liquid phase of the V-Tanks contents in order to satisfy the land disposal regulations (LDRs) according to the wastewater treatment standard. Since Envirocare cannot accept liquid radioactive waste, the water must be solidified or absorbed prior to shipping for disposal. For conservatism, however, the mass of absorbent is not included in these calculations.

These calculations and the mass balance diagrams included with the process description show all the organic constituents and heavy metals of concern will be significantly reduced below the LDR treatment standards. Furthermore, most of the radionuclides will be removed by the ion exchange resin.

List of Attachments

Attachment 1 Mass Balance Calculations

Attachment 2 Process Flow Diagrams/Mass Balance

Attachment 1 Mass Balance Calculations

CXTENIORY.
THE THE PROPERTY OF THE PARTY O

	T/SU						E			بر. د	molt.		Брин		- HATE	٠.	<u></u>		\	W .O	. NC					
ASK DESCRIPTION Make B									alance Color									TASK NO								
EP/	PARED BY GAP							•	DEPT 1382 DATE 984-28								Ø	APPROVED BY								
	CHE					1977	;	- {	DE	PT			ا ــــــا	DAT	E _	1		_								
THO	OD F	EY.	BY	in the second se				DEPT					PATE						DE	EPT			_DATE _			
1]	·	·	1	Ţ.,					afidena.]			1	T . (i		····-	1		1		
i	9	3	7/	2	m	7	D	te	ا. خــــــــــــــــــــــــــــــــــــ	1	٠,	-	17	7 2	تعط	L	Be	Ü.	É,	<i>^</i>	10	-	كسيا	1	1	
	1	-	مما			1			1	F	عو	DA	أحا		1/	1		1	36	.;	1			1	-	
	1	100	'A a	To	ع م	RI	Žen	id	2			1	1.0	5	7	1			0/]	-	ļ			
	-117		ব										De	•	1				91		3]	-		1	İ
			1	1	1:	1.7		-				:	a	;]				06	•	i	-				
41,000	1	1,1		2	4	5.						.,	-				1 :		04	1				1		
		-	i i		1	1	1		1	i .			1	Ì), z	D.	2)	1]		-
			1			1.1			į		į	1	0,0	21												
	τ	1	E		:	139	}	,			-	1	O						12			<u> </u>				1
		-					İ		ļ		ļ		1.	i	<u> </u>			0,	62			1	i		•	
				i i				<u> </u>		ļ	1		0,	<i>j</i>				O.	00	6	<u>.</u>					
									!		ļ 		<u>ک</u> ر	01					00	• .						
	F	خ?	E]		75.			j			ر ا	0	Ī	<u> </u>				ノス		İ]	-			-
					1 : 3	5) 		ŀ	I T	1.4	1	1		F I				05							
			ļ		4) 4	12						-	O.Z	21			,		00	;	3			[
	1.:	7-1	le	Sá	th	nP.	26	سع		*			0.1			10			0		3		1			
		Ro	•	:		ď					1		0.1	/ פֹּ	İ				D		ţ					
	1 .	- /,	Į.	F	0	Ē		;	<u> </u>	į	ļ 	<u> </u>	0,0	21	<u>.</u>				0	<u> </u>			ļ L			
							-	رر	ne	رمد		İ	י עם	20		i !		_	0/		16	-4	eQ.	-	no	o fi
	R	<u>-</u>	2	21	Ž,	OR.	Cal	21	a k	tal	المناه		0	1				D	DZ				1		7	E,
	7	2-	Q	ich	Ū		, E	en	حد	Q.	٥		0,	1				0	110)		Ī				
	2	01	4	-	ot	Ry	2	Re		S			1	Dl.					,00		6	2	78	1/,	21	ne
	į				i	1		;) 				!	; ; ;							7	7	10	Qe.	مو
V.	To	J-n	Bi			1 2 2	1		1			ļ									1					
	!		V-	-/								ļ	/	ス					V	7_=	3_	<u> </u>			ا ا	1
		m	21		Ø.	10	3)	B	61	90	1	ريسا	10 1	18:1	5-3	06	AS		in	10	lo.	10	B	6A	وم	18
6	£	6	11	<u>. </u>	0:	85	7	0	4	3	Ž	3	<u>ס</u>	1.3	36	A	.7		8.	20	11/	7	5,	8		6
_	2		'	t .	0	3 2	Ż		32	-		23		<u> </u>	i -		73	Z <u></u>	0	ZD	11	7	//,	رح		0.
	Bic		D'		7	13				52		0,2	D	i			19	57			5	85	0.	رک	>	13
						1		تعق	¥ 0,	10		!	1	!	ਰ	115	-				Δ	7	13	52		
2	E	/	21	4	0	75.	2	C	12	ס		<u> </u>	Ì					. 4. # = 1 * 4 *		• • • • • •					i 	Dr.
	i !			ļ		<u> </u>				ļ								*****			į	ļ	ļ	<u>į</u>	2	2
	İ			!				1	•	į.	; 		į			[{					i L		<u> </u>	į ·		<u> </u>

	CI	JEN	T/SI	JBJ	ECT		1	NZ	E	4			1,1		- SCD4			•				W.C					- OI .	12	-
	TA	SK	DES	CR	PTI	ON							• •						:			. TA	SK	NO.					_
	PF	REP/	NRE	D B	Y			7.		:	_ DI				<u> </u>	DA.	ŗE _		-				AF	PR	OVE	DB	Y		7
		HTA							: <u> </u>	.	_ DI	PT	16.5	- ;		DA'	re _		:		_								1
	Mi	ETH	OD F	REV	. BY		: 	. سر		71 7		EPŢ		,		DA	Œ.				DE	PT_			DAT	E _			
	ļ		I		ريع	~	7	2	KL		7		4	_	<u> </u>						ļ		 	<u>.</u>					
4		an	į 2	56		1.0	,	1	e z	4	<u> </u>	2		11.	•	:	1				7	(4)			7	ļ			
ter,				ura.	121	VOL	<u>.</u>		1	1			<u>. ()</u>	4/-	1	1 2			7		מכי	Po	10	<u>}`</u>	2-1	47	7 N	\$2.]	K
18/p	(/-	<u> </u>	52	D+	52	b	12	12	1	13	88		+		-	4		+		-	- 	-	†	_		·	-	<u>.</u>
M	!	.,	<u>.</u>	i		<u> </u>	1		<u> </u>	ļ	ļ	į,	12		-		-									··········	j 	1	
3/16	1 \	1-	2	56		121	<u> </u>	-	4		26	,D.	Ζ_	-	ļ	! -	-	<u>.</u>		<u> </u>		ļ				<u>.</u>			_
.h.		1/2		Z	3	سا	<u>;</u>	-	<u> </u>	-	ا	<u></u>	<u> </u>	 	ļ	ļ		ļ	<u> </u>	.ļ		ļ	ļ.,	ļ	ļ	ļ			-
4196	<u></u>	-	5			. دع ا	5	╁┈	<u> </u>		2)	7.5	<u> </u>	-	 	-	-	<u> </u>	<u></u>	-	-	<u> </u>		<u>.</u>		<u>.</u>	ļ	ļ	1
数	 2	2		يحرا	0	50	j		-	10	94	2.1	15	47	9	,	سرور	/	7/-		3 9	2	75/		211	22	//		. 4
1-		1						3					-		Y	, mc 5		4	.79		18.6.4		<u>U</u>		7.76		16	3.15	
66.	74	1	47	4	Cs.			جرر	14	11	00	78	12	342	9	15	4,7	. /	74	/ (292	2,	21	Z	2,16	2	16	2,6	<u>.</u> B
~ ~	<u> </u>	<u> </u>	4-	ļ	-	7.				<u> </u>			ļ	<u>;</u>	<u> </u>	ļ			ļ	ļ	-	ļ		14			<u></u>		ļ
9,5	12	7	<u>C9</u> ;	rc-	ng	//		D,	03	7;	55,		2	Ø	8	5,	195	1 0	ØΥ	5	0,00	310	0, 02	48	0,2	7/7	2	00	87
	-	<u> </u>	L	- (17/	*/		ļ	ļ <u>-</u>	ļ	ļ	<u>!</u> ;		ļ	<u> </u>	<u> </u>	<u>.</u> 		<u> </u>	<u></u>	i	ļ		 !		ļ !	! !		
79,	7,	·\				to		5	17-	3	برك	47	, , ,	72/	36	-,,	נק בי		20	4	<u> </u>	4/6	 در		10,5	25	21	1-	, =
,			1							,	1	i	'	1		1	ŀ			İ	į			l i			•		i
0.	33			L	61	90	;	0,	15	-	3, D. 7, D.	- [] {}		7	ZX	0)	5	157	2	220	14.	<i>520</i>	2,	208	33.	بر بخذا 1.15	257	<i>à</i>	٥4
1.1	2)			······································					<u> </u>		4.1.7	CIO.	بيزي	/	-			70	<u>Ĺ</u>				2	Y	<u></u>				_
4	北						*******			1.7	180	·····		57	65		7./5	7.4	} !						<u> </u>	••••••			
	••••••					ا ا	7	Ð	_ 0		<u></u>	1	7		-70	7	abla	0	7	<u></u>		······································					*18****		
Ï	*******		*				}G			(s	جي, د		1644				ii. 22			r				. ,					
								-		!							-16 ,			·····				•••••••		*	•••		
-			ļ							- -																			
į																						<u> </u>	<u> </u>	<u>i</u> .					
. -																	••• • •					<u>.</u>		ļ.					
-							•			·;			77				,							- -					
. [İ							1				11														·····		
								4	!																				
1		.					,	i					.: !																
н	- 44 J	10-05	-003/	M-0/6	3																								

. . .

W.ES	JOHN.
MANAGE	DEDCHERBACKING ATMITS

LIENT	r/Subject	INEE	-	PENNORM	DESCRIPTION	TACKED OF	W(T)3		W	 7.0. N		·		of	-
ASK [DESCRIPTION		····							TASK					
REPA	RED BY	÷.	DE	P T	1	DATE	۰۰.	· ·			PPRC		BY		\exists
	CHECK BY		DEI	,		DATE				- 11					
ETHO	DD REV. BY	* : • * t : 2	DEF	PT		DATE			DEP	T		ATE			
-					T		-	- (1				1	=
9	on Ex	Ran	ر اور		Year		me		0			-		•	•
-	1/-1		0 8			7				۔ ا		†			-
PR	084	1	0.40	ا مع ۵	1200	1	1	22		- 2 - 1	7 /	343	ارد	×	_
4	0.369		15	4	3		10		7	36	20		ارد	5	
¥.	47,6		110				70	acon.	Ten		<i>C.U.</i> C.A	يعرم	I.		7
	0.4		1,15	4			- (C)	gpn					4	+	
ر براد. ا	0,25		. 0,39			7	90°	120		5/19	PP	· · · · · · · · · · · · · · · · · · ·	· .	00	
	12			3			10	יט פר		×10				71	
19.	23,1		9506		Radi		Silo	DA	mg/2.	221	201	ممن	203	->/	24
A.	2.78		5,05						מנצר	0,3	8 =	> 0.	003	₹o.	002
Vi_	0,529		090		- zle	da	51	Doot	>	-/-/		7	× 2 ×		in
2	: : :		9221								-	-			
	104	24	1649	911	35,3	5.3									
	say	49.1		10 =	> 4	7	#	-	c H	1900	2				
	7	3	15 40		> 2	24	R		4,	7	<u> </u>				
	レータ					-	ייי עלייי					••••	<u></u> -		
ca	6.49 mg	10	6,23	n Ca	PP.				1		<u>.</u>		j.		
-	0,437		1.17	24.5	3-		·			-					! • *
10	7~3.5	7	4 55		Rac	20	real		Con	1- ps	75.0		0_ =	्राह्य उत्तर ≪	
14	0.476		0.56				7				1				≅ ¯
()	2457		75		-				† †		- 				!
	276	35	3.85		· Ou		10	200		1/2	-i	<u>, </u>	<u>-</u>	·- ·	• •
	0141		0.25			7			† 4	- 1000	-i				• • • •
~		38	7.70		/ (ア人	19							i		
-	10	138		3 2		11			Tgal	7					
		4-10	9-1-1		. /	7/23_		آور س	gar			•••			-
:	V-3		1 3 1							 i	•	· ·			-
	51.4	12	8,50		Rasi		00	00		10 -		150) -, - <u></u>	10.40	-01
Mg ?	126	10	8,33			KA.	clide		7.213	4-15	0.	2/2		e mak	. 60
1/1	0.765		137		A SA	-	65			1				-	·
u.e.	51,700	160	1-52		V	ا بح	ترمياح		+/1	- 0	-			-	
57	0.964		777				\		+-1					ļ	
		307	167	1	70-	00		100	استهر د	. ;					_
V 10-05	5-009/A-5/85	308	Z!	الرح	797	NO.	<u> </u>	6.77	7	al		:	<u>i</u> .		

				: 1			· •				: :	_		÷4.	. .	: :								7	7/2	A.
					a 	•	<i></i>	\ -	$\tilde{\mathcal{N}}$	I.	5		II.	辽										o1		,
	7SUBJ						E	<u> </u>		·	 -			·										*		,
)ESCR		ON		•					· ·					-				TAS							1
	RED B				<u>: -</u>	<u>.</u>	_	DE					ITAC		. 4	:	-1			AP	PRC	YE	D B.	1		
	CHECK				• •				PT.				ITAC		. : . :		-				<u>.</u>					1
THO	D REV	. BY			1,71,		 .	DE	PT.		ļ	<u></u>	TAT			•••	<u>- L</u>	DE	<u>- تع</u>	*********		ATE			.,	
			<u></u>	<u>.</u>					ļ	ļ.,	<u>i</u>	<u> </u>		2	lu	Lg	_	0)	heen.		F_1	<u>lle</u>	م	<u> </u>	<u> </u>	-
Ba		D.	7	7	L	0	72	l ja	a.€		20	*********	,		٥.	.ک	8.8	APPEN S	P.L.	i !	2.0	6		71	E 	į
32		206	5		1	0,	77	-	1	/- /-;] •	10	: .	}	Q	0		<u>;</u> !			2(16	Ţ	ļ <u>.</u>		į
e l	01	7.	ا پخ				64	ļ	<u>:</u>			/D 7				<u>, 13</u> ,		ļ	ļ	6	2.4.	ļ., l	<u>/</u>	······································		İ
	70	11	/		بمكت	7	5.C	<u>. </u>		1) 4		3c 32			7.1		133	<u></u>	 		2	8 687	7	ļ	ļ	
1	D.	46		\		77.	スト		<u> </u>	7		78.		! !	c		2/0	₽}∙∙∙ ••••• 1	<u> </u>	:	:	01 01	*	 		
o:		98		1	1	رو پرد در کوک	39	ļ ļ			٦.	z. <i>U</i>			ن <i>ا</i> ر	٠د ت	4	,			ļ	514	f .	i		1
e.	17	ља. 4	·		\	7	7.5				i !	<u> </u>			بر اگر	1 9	12	[,		i	3,	_) 	†		1
B	79	14	2	17	' \	17.C	16	ļ ļ	<u> </u>	,	!	<u></u>) غر		17				~)	15	3	-		
4	20			7	چک	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	とフ			 -	 				3)	1.4	9		1	14	14	13	i i		1	
Ž	2	3	1		4	12	X /						į				_ [1	, ,	Š	84	ž			
z)	0	5/6	3			2	18	<u></u>	<u> </u>		[[Ó	115	22				0	0.7	6			!
14 14 1	13,	8	1		2	3, 4	1/_								1	2	14		<u> </u>		2.	03				i
K	83	40		10	69	2	3)		7	ļ.,,,		<u>.</u>		8	44	Ò				10	83.	[]] • • • • • • • • • • • • • • • • • •				į
9 2	1/8	z	ļ <u></u> .	<u></u>	2	7.5	3		I	j. ;;		,		<u>.</u>	12	38	8					7	_			
				119	1.2	10	8	ia a == = = = = = = = = = = = = = = = =											1	38	3/	52	4.0	mg		: `
					-	<i>.</i>		91	=	->	6.	94	μ	4	-	Z	Dg	al,	<u> </u>	. 7	0, 1	96	?	0	لعد	2
			<u>.</u>		7	<u> </u>				1 1		R	المع		,		de	J.	11	Y5.	2.1	19	5			1
-	I de l	2	4	-		ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ļ 										يبح	¥	14	<u>.</u> ک	2,	5	4	
	1	, .D.	4	1		<u>.</u>			1			يرج	zu	ø	V		- /-	76	5	→		. [.].	34	بالرو	g an	6
		6.	9						_		- 7	<u>1</u>	7		(مليد		16		ļ				5.4 Le	R.	<u> </u>	
	- 44	8/	D				ļ _.	*******	!	0	ax	لــــل ا	7-1	<u> </u>	_2	14	4	<u> </u>					J			
	12	6	ð			<u></u>	ļ,-			3100000		<u>V</u>	نر – ب		ر ا ا	لا.,	0.	<i>†</i>					······································	<u>!</u>		į
	/ Y	7	<u> </u>	-		 	ļ ļ	.44 · 32444				_ V		ا	1!	()	X .	≥,, ,			•• •		******			
		0	9	·		ļ	ļ <u> </u>	4 de +4q e ea		10	- 2			<u>.</u> <u>.</u>		12	용	7		ء سو	 اسا	10_	1	7		
		*	<u></u>			h		÷			,					4.4	4	I,		۔۔۔۔	N,	ليجيدا		3		
	ララ ア	/-		1		, 	<u> </u>				******	Ž	-		10		1 7	20	٠		e /	5	B	2.5	//-	ø.
1	as	7	J.F	1		2	1		0	٠				بمد		-2	/	مد	7		ゥ	. 1	4	10	The	ļ -
~ [フォ	プ	¥l	7	يعبرت	, astal		-							•			. , .		\sim		aa	3	W.Y,	1	1
	j	<u> </u>	İ					* *******					_	j	1					<u> </u>	*****		<u></u>			
	**************************************	1	1					, spinder			.,,							11								i
			-{-11			!. !. !		-1201004	41 *******	4.					·····i			•	,		•••••••					
10-05	-003/A-5	/85			4	·							***********					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			*********					1

1.11

SHEET 5 of 12 CLIENT/SUBJECT / NEEL W.O. NO. . TASK DESCRIPTION MOLL BO TASK NO. . PREPARED BY 82 DATE_ APPROVED BY DEPT MATH CHECK BY DATE METHOD REV. BY DEPT. DATE DEPT DATE Wole sotherm tata 46AC mall 0.01 0 000065 0.01 D 19 000 ODI 0.058 D 0003 クロン 0.05 030 Acenephthene -0.05 0.05 0.18 0.08 0,059 Acenaphilhylene -0.05 2,059 235 Anthraceng 0.05 0.02 6 0,099 Benzo (a) anthracene 0,70 0,05 0,001 0.061 2,0/ Benzo (a) pyrane 0,02 (b) 0.70 Banzo (b) fluoranthene 0,005 00017 Benzo (g.h.l) perylene ? 0,0055 0.11 215 0,02 207 Benzo (k) fluoranihens Benzoic acid 105 1.40 Benzyl alcohol 05 DDZ NA 0,70 001 Bulylbenzylphihaiate 00045 3112 0.017 Bis (2-0.03 0,036 0.005 0.81 shieroethexy)methene 003 2,90 0.033 æ,≨) Bis (2-chloroethyl)ether !: 0.015 0,05 Bis (2-chloroisopropyl) either 0100 0.05 D. DY Bis (2-ethythexyl) phthalate 0.083 0,055 0.02 0.07 <u>ላ</u> ልፏ 4-Bromophenyl-phenylether 2.04 D. D5 Chrysene 4-Chloroenilino (p-0,034 0,04 0.46 chlorosniline) 1-Chloro-3-Methylphenol (p-0,034 0,01 0018 047 chipro-m-cresol) 0,05 12.05 2-Chlorensphilislens 0,28 0.015 0,04 2-Chlorophanol: 0.044 0.954 0.007 0,05 0.055 2,00 O(benz(s.h)enthracene RFW 10-05-003/A-5/85

11 4

1, 34

SHEET 6 of 12 CLIENT/SUBJECT W.O. NO. TASK DESCRIPTION TASK NO. PREPARED BY DEPT DATE APPROVED BY MATH CHECK BY_ DEPT DATE METHOD REV. BY DEPT DATE DEPT DATE مروزي Race leval. 16GAC 1.2-Dichlorobenzene (o-: 0.05 0,03 dichiarabenzene) 1,3-Dichlerobenzene (m--0.02 003 dichlorobenzana) 1,A-Dichlorobenzene (pdichlorobenzena) 3,3-Dichiorobanzidina (Dibanz (a,h) anthracana) 2,4-Dichlorophenol: 0.05 Disthylphthalate 2,4-Dknethylphanol Dimethylphthalale Di-n-butylphthelate Di-n-octylphthalata 8.05 2.4-Dinitrophenol クカス 0,05 0.06 2.4-Dhilrotoluene 000 2.6-Dinkrototuene 0.05 Fluorenthane 0,05 1 003 0,059 0,47 Fluorane 0.06 0,055 Hexachlorobenzena Hexachlorobutadione 0.05 (Hexachloro-1,3-butediene Dids Hexachlerocyclopeniadlene Hazachicroethane ひりひょ 0005 Indano (1,2,3-cd) pyrene 2-Mainyiphanoi (o-cresol) 4-Maihylphanai (p-cresol) 0.05 0.03 Naphihalena 2-Nitroenline (o-nitroenline) 32

	, A	と思りたと		<u></u>	ET 7 of 12
ENT/SUBJECT		EMMILLIORERAPH ENGINEER	.•	5HE W.O. NO.	EI of
SK DESCRIPTION	; ;			TASK NO)
EPARED BY	DEPT	DATE	Γ		ROVED BY
TH CHECK BY		Viet.			1045D B1
THOD REV. BY	7			DEPT	DATE
Compil	Ra	0,0,0	B/HG	no Core	LUR DO
	1	802			1 mg/ lt 61
4-Nitroeniline (p-nitroeniline			0.02		0.078 3,5
Nitrobenzena		0.05	0,0	2 /	0,068 039
2-Nilrophanol (o:		002	0,0	9 /	
nitrophenol) 4-Nitrophenol (p-			1 / 1 1		0,12 234
nifrophenol) N-nifreso-di-n-propylamina		0.05	0,03		
(Di-n-propyinitrasemine)		0,05	001		8.4 1.48
N-nikosodiphenylamine (Diphenylnikosamina)		205	0,014		0.92 0.46
Pentachiorophanol.		0,05	0.04		0,089 1,96
٠.		0.05	0,06		0,059 0,28
Phenanthrene					
Phenol		0.03	0,00		0,031 4,0
Pyrene		0,05	0.04	£4 /	0.067 0.75
			202		0.014 0.90
Pyridine		0.01	.0102		4,011 4170
1.2.4-Trichlorobenzene		0.05	0.04		0,055 0,75
			- 12		
2.4.5-Trichorophenol		2.05	0,048	15	0,18 1,90
		2.03	0.04		A 20 A 20
2,4,6-Trichlorophend				0.000	0.835 0.35
,				low	20.22
			1	5 700	10.77
covert to	Lawel	ciace = 644	4	6 400	24,07
642 (6075)	-22-	3 RGAC			60.75
Bal mall = I	5P,9073Z	100 425/5 =	87,15	->0.4	67 lb
Estimated:	10C	were comp	04 = 0,	7(87)5	3 6/ mg/s
Measured	+00	1 70=	HOLM N	4, 66	(22 - 2) 27
, court		a very company	100	61	x323/25.
0-05-000/A-5/85		16. s			

SHEET \$ of 12

TASK DESCRIPTION: PREPARED BY DEPT DATE MATH CHECK BY DEPT DATE METHOD REV. BY DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE PLICATOR TO STORE OF	z L
MATH CHECK BY DEPT DATE METHOD REV. BY DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE V-3-1306900 V-9-320 = 37069al, Liquid Volume = 17639al	2
Drum Felling - other againing calculate composite Consentration / lb GAC Arthuras V- HO40ge V-1040ge V-3=1306gev, V-9=320 = 3706gel, Liquid Volume = 1763gel	L.
Drum Felling - other againing calculate composate Consentration / le GAC 178 denne : V- HO40 go V-1040 go V-3=1306 gov V-9=320 = 3706 god, Liquid Volume = 1763 god	l
V-3=1306gre V-9=320 = 3706gal, Liquid Volume = 1763gra	l
V-3=1306grd V-9=320 -> 3706 gal, Liquid Volume = 1763 gal	l
	- -
	i
Compound consonall deline mall mall mall mall le GA	
Acensehthere 0.05 0.30 1 6 1.45 0.059 0.7	
Acensphiliplens 2,05 0,08 1 7 1,53 0,059 0,29	
0.05 0.04 1 3 1.36 0.059 0.52)
Benzo (a) solbracens 0.05 0.02 (k) 1- 8 1.62 0.09 1/19	
Benzo (a) pyrana 0,05 0,007 1 1 1 1,00 0,061 2,10]
Benzo (b)	
Benzo (g.h.i) perylane 0,005 0,00/7 1 5 1,19 0,055 10 2	7
Benzo (k) Ruorenthens 0,05 0,02 / 6 145 0,11 1.0-	7
Benzoic acid 1-D 0.05 5 MA	
Banzyl elcohol 05 002* 1 - WA +	,,,,,,
Buly/benzylphihalate 00/ 0,0045 1 8 162 0.017 52	7
Bis (2- chiorosthoxy)methans 0.03 0.005 1 5 1 5 1,62 0.03 47, Re (2-chiorosthy)elber 0.03 0.005 1 7 1,53 0.03 415	6
	1
Bis (2-chioroleopropyl) ather 0,05	! !
Bis (2-othythexyl) phthelate 0.05 0.100 0.083 38 336 0.28 0.7	1
4-Bromophenyl-phenylether 0,05 0.02 17 153 0.056 11	
4-Chloroantine (p- 2) 74 7 0 34 1 27 3,26 0 46 / 6	1 :
4-Chloro-3-Melhylphand (p- 001 003* 1 4 107 001 0	9
2-Chloronaphthalena 0,05 0,55 1 10 1,79 0,05 0,5	3
2-Chlorophanol 0,04 0,015 1 6 1,45 0 044 1,4	2
Dibenz(s,h)anthrepene 0,05 0,007 1,5 1,36 0,05 2,8	-

T-906 P.16/31 F-146

Table Table		SHOULD SAME AND A SHOULD SAME	120	0 40	
		. 7			
	DEPT	DATE		APPHOVE	DEY
	DEPT	_DATE _			
Day down	DEPT	DATE	DEP	DAT	#
Come mall	BYSE GAC	male	10 1 1 mg/	male	GAC_
	- 00=	1	210 190	e 0 56	9,34
	طام آلم		6 1,45	0034	1,07
			49 211		2,53
$ D_r$ \mathcal{O}	5.003		37,0	0.09	مرد ام
	5-616		66	72,055	
			8 1162	0,044	0,40
		17	8 1,62	01	0,28
			10		
		† † † † † †	i ' .		h da
00	4 9,028				0.80
0,0		1.	·		0,12
0,0	0,0804		6 1,45	0017	0,27
0.D	2 22	5	27 337	0.12	5112
00			10 1.79	0.32	0,44
200			8 1,62	0.55	0,48
0.05	0,10		8 1162	0.068	0,24
0.02	003		5 1.36	0.059	0.67
0.00	0.06		7 1,53	0,055	0,37
0,0	5 0,05		10 1.79		سروار ليه أأ
D, DS	0,20		7 71		2,15
0,05	0,02		8/162		7377
-000	5 00021	a pyron)		בבטט,ע	
2,05	01002			11,0	
-0-0	0.50.0 W			0.77	
			\$ 1,62		0.79
Jahanitan Infirmani	tentemble farente fe mingtententerent unter				1,57
0,05	27025	5	2/20	0,21	25.86
		DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT	DEPT DATE DEPT DATE DEPT DATE PATE OCCUPANT MAGAC MAJI OCCUPANT DATE OCCUPA	DEPT DATE DEPT DATE	DEPT DATE APPROVE DEPT DATE DATE DEPT DATE DATE DATE DATE DEPT DATE DATE DATE DEPT DATE D

Phenenthrene 0.05 0.06 1 6 1.45 0.059 0.36 Phenenthrene 0.05 0.063 1 120 9.56 0.039 Pyrene 0.05 0.04 1 12 196 0.067 0.72 Pyridine 0.01 0.02 1 1 1 1,79 0.04 1,32 1.2.4-Trichlorobenzene 0.05 0.04* 5 17 6:11 0,18 2:25	CLIENT/SUBJECT		MAKARIN U	DESCRIPTION OF THE PROPERTY OF	SHEET /1 of /2
MATH CHECK BY METHOD REV. BY DEPT DATE CRACK CRACK CRACK Percentine (p-nirreardine) DOS 0.02 1 9 1.71 0.068 1.26 Nitrophenol (p-nirreardine) D. D. D. D. D. D. D. D. D. D. D. D. D. D	task description _		4	;	TASK NO
MATH CHECK BY METHOD REV. BY DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DEPT DATE DATE DEPT DATE	PREPARED BY		DEPT	DATE	APPROVED BY
DEFT DATE	MATH CHECK BY			· ·	
Nitrobersone	METHOD REV. BY				DEPT. DATE
Nitrobergene	Comoid	terebra	DE/BGAC	met mg	of Compose mell GAC
Nitroberosis 2.1 7 1.53 1.028 1.7	-Nitrosniline (p-nitrosniline	- 10		5 4	499 0,008 3,67
3. Nitrophenol (on nitrophenol)	Mirobenzene	0,05	0.02	1 9	111 0.068 1.26
4 Nilrophanol (2) Nilropada (2) Nilropada (3	2-Nitrophenal (o-	0.02	0.02	7	153 0028 112
Dispression Dispression	4-Nilrophanal (p-	0.05		5 37	ورايم ليد
Holling School D. D. D. D. D. D. D. D. D. D. D. D. D.		0,05	001	1 13	205 84 3,01
Penlachicrophysiol Phanel Phanel Phanel Pyrene D. 05 D. 04 J G J. 45 D. 059 D. 36 Phanel Pyrene D. 05 D. 04 J J J J J J J J J J J J J J J J J J	N-nitrosodiphenylamine	-1 1		1 18	1-h h
Phenei 0.05 0.06 1 6 1.45 0.059 0.36 Phenei 0.08 0.003 1 100 9.66 0.039 Dyrene 205 0.04 1 1 12 1.76 0.067 0.72 Pyridine 0.01 0.02 1 10 1.79 0.014 1.32 1.24-Trichiorobenzene 0.05 0.04 1 7 1.53 0.055 0.56 2.4.5-Trichiorophenol 0.03 0.04 1 10 1.79 0.18 2.25 2.4.5-Trichiorophenol 0.03 0.04 1 10 1179 0.1835 0.66 2.1.5-Trichiorophenol 0.03 0.04 1 10 1179 0.1835 0.66 70,30 0.06 70,30 0.06 70,30 0.06 70,30 0.06 70,30 0.06 70,00 0		→ !!!		5 13	12 17
Pyridine 0.01 0.02 1 10 179 0.014 1,32 1.2.4-Trichlorobensene 0.05 0.04 1 7 153 0.055 0.56 2.4.5-Trichlorophenol 0.05 0.04 1 10 1/79 0.835 0.66 2.4.5-Trichlorophenol 0.03 0.04 1 10 1/79 0.835 0.66 2.4.5-Trichlorophenol 0.03 0.04 1 10 1/79 0.835 0.66 2.5.5.5.0.08 1 23.57 33.34.88 1 44.69 56.5.5.0.08 1 25.86 130,14 9 9 2.06 Manual Altocal TOC 18 May Compals = 0.7 (130,14) = 91.10 Manual Altocal Companie: 1040(66) + 1040(05) + 1306(105) +	, ,	0.05	0,06	1 4	
Pyridine 0.01 0:82* 1 10 179 0.014 1,32 1.2.4-Trichlorobenzene 0.05 0.04 1 7 155 0.055 0.56 2.4.5-Trichlorophenol 0.03 0.04 1 10 179 0.18 2.25 2.4.5-Trichlorophenol 0.03 0.04 1 10 179 0.183 0.66 2.4.5-Trichlorophenol 0.03 0.04 1 10 179 0.1835 0.66 33.3498 1 42.66 56.599 10 1 25.56 130 14 9 9 2.06 Total ng/1 1 5ther compile - 130,14 ng/1 92.06 Manuaran 10 TOC 17 Mars compile = 0.7 (130,14) = 91.10 Manuaran 10 TOC of Composite: 1040(66) + 1040(105) + 1306(105) +	Phenoi	003	0.003		9,56 0,039
1.2.4-Trichlorobensene 0,05 0,04 1 7 155 0,055 0,56 2.4.5-Trichlorophenol 0,05 0,04 1 10 179 0,835 0,66 2.4.5-Trichlorophenol 0,03 0,04 1 10 179 0,835 0,66 2.5.50 p. 8 1 25,50 Total agil 4 8ther complete 130,14 mg/l 92,06 Total agil 4 8ther complete 30,14 mg/l 92,06 Measural TOC of these complete 0,7 (130,14) = 91,10 Measural TOC of Composite 1040(66) + 1040(105) + 1506(105) +	Pyrens] 205	0.04 13	1 12	196 0.067 0.72
12.4-Trichlorobenzene 0,05 0,04 1 7 153 0,054 0,56 2.4.5-Trichlorophenol 0,05 0,04 1 10 179 0,18 2,25 2.4.5-Trichlorophenol 0,03 0,04 1 10 179 0,1835 0,66 2.5.5.5.0 p. 1 25,86 130,14 92,06 Total ng/L x 5ther compute 130,14 mg/L 92,06 Measural TOC of Composite 1040(66) + 1040(105) + 1306(105) +	Pyridina	0.01	0.02*	1 10	1,79 0.014 1,32
2.4.5-Trichorophenol 0.03 0.04 1 10 179 0.835 0.66 2.4.5-Trichorophenol 0.03 0.04 1 10 179 0.835 0.66 2.5.50 p. 8 1 25.86 Total ng/L of the compile = 130,14 mg/L Estimated TOC of these compile = 0.7 (130,14) = 91.10 Measural TOC of temperate: 1040(66) + 1040(105) + 1506(105) +		0,05	0,04	117	153 0,055 0.56
2.4.5-THEINOCOPROMEDIC CO. D. 3. D. O. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. J. D. D. J. D. D. J. D. D. J. D. D. D. D. D. D. D. D. J. D. D. J. D. D. D. D. J. J. D. D. D. J. J. D. D. J. J. D. D. J. J. D. D. D. J. J. D. D. D. D. J. J. D. D. D. J. J. D. D. D. J. J. D. D. D. D. J. J. D. D. D. J. J. D. D. D. D. J. J. D. D. D. D. J. J. D. D. D. D. J. J. D. D. D. D. J. J. D. D. D. D. J. J. D. D. D. D. D. D. D. D. D. D. D. D. D.			1 1 1	5 17	day Kaing berkaman 1 1 day and a markanan la mark
33,34,08 1 23,57 33,34,08 1 25,86 56,50,0 PB 1 25,86 (30,14) 92,06 Estimated TOC of Rese compile = 0,7 (130,14) = 91,10 Measured TOC of Composite: 1040(66)+ 1040(105)+1306(105)+	2,4,5-Trichgraphen of	פטיע	0,07		0,18 2,25
33,34p 8 Total 23,57 33,34p 8 H H2.68 56,50p B 1 25,86 130,14 92.06 Estimated TOC of these compile = 0,7 (130,14) = 91.10 Measured TOC of Composite: 1040(66)+ 1040(105) + 1306(105) +	2,4,5-Trichiorophenol	0,03	0.04	1 10	179 0,035 0.66
Total ng/l of the compile = 130,14 ng/l Estimated TOC of these compile = 0,7(130,14) = 91,10 Measured TOC of Composite: 1040(66) + 1040(105) + 1306(105) +					40,30 Total 23,57
Total ng/l of the compile = 130,14 ng/l Estimated TOC of these compile = 0,7(130,14) = 91,10 Measured TOC of Composite: 1040(66) + 1040(105) + 1306(105) +		,		33,	1798 4268
Total ng/l of the compile = 130,14 ng/l Estimated TOC of these compile = 0,7(130,14) = 91,10 Measured TOC of Composite: 1040(66) + 1040(105) + 1306(105) +				170	24077 1 25.86
Fetinated TOC of these compile = 0,7(130,14) = 91.10 Measured TOC of Composite: 1040(66) + 1040(105) + 1306(105) +				130,	19 72.06
Measured TOC of Composite: 1040(66)+ 1040(105)+1306(105)+	Totaln	gll 78	ther com	poh = 130,	14 mgll
Measured TOC of Composite: 1040(66)+ 1040(105)+1306(105)+	Estim	ated Ti	CHA	ese compas	= 0,7/130,147=91.10
32D (3) 753706 = 95 mg/l					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	measure 17	0C 03 C	mperce.	1040(66)+)	040(105)+1306(105)+
Cateral dens 1 419 26 Hotelating Conseld (141 Cart 1 == 172,06)71	actual	2000	9 4 2 80	Cathe Porch	ali GA (35/9206) 4/

W.E.	
KANGERI	DEPARTMENT AND THE PERSON OF T

17/27 SHEET 12 of 12

42	K I	ES	CR	IP	HU	и _		<u> </u>				·										TAS	KN	0					
RE	PA	RE	D 8	Υ.				· · ·			DE	PT_	· 		6	ATI	Ē_			_[APF	RO	VED	BY	,		
AT	TH (CHI	:CX	8	Υ_						DE	PT_			[ATI	Ē			_ .							·		ł
		10 F								<u>.</u>	DE	PT.	:			TAC	<u> </u>				DEP	T		iD	ATE				
Ţ		Ţ	1	1	i			1.	T	j		i					1044441												
<u>-</u>	ستت		-	Ż	7	2	Δ			11	ور						*******				********			i		*********	••••		
		2		7	s	Fand in t	().	<u> </u>								**********	M1444					4		\ 					
i i		<u> </u>	-	/	ا	<u> </u>	سن. م		D	0	2	L	/_) ;	22		e	/ \			22	D							
		<u> </u>	ئ ىد. ۋە				,		الما			· · ·		· · ·	~رد	7	2 1	zŚ	Ī	2	74	.3							
				7		00	,,,,L) :	<u> </u>	7	1/	- 1]		٠,٠	75		Z	25	1	i				į		i
		-	- -		بر ز -	 `	7	ļ				برا	-	Z	••••••••••••••••••••••••••••••••••••••	7	0	3	}		34	,5	_						;
				ا بلر		/x	7 1	1	 			-7	/_	2			D ,	8)	;******** 	4	34	,72	5	İ					
		4		ز آ		2) A	0	1	nu	 	2	20	Le.			7	····	زر	<u> </u>	0	50	, 2]		<u> </u>				,
		<u> </u>		j/	***,4 ***		7		A. Maria	H.F. F.		بعيد		7		4	кця. i	i i	~	7	7 7	4	1	QZ	_	******			
•••••					•••••	,		 -	i		3 (141 - 142 H	1	†		 	ļ !		4 *******							-		! ! !		
						. 4 4 - 5	} }]****** !	<u>.</u>	i		1	j !			1	1			1				ļ 1	1	
13 00 00				 	******		ļ	ļ	-	1.		in							<u></u>	-				1	!		ļ.,,		
		·				コ			5	0	-	1	i	j				İ]								ļ 	İ	
	4		المعر	-	Z			i	1	ţ	!	ţ.		i i			į Į		[.					ļ	ļ	
	ļ ļ	-	-		·			カ.	47	[1	J. 1	7	4	12	4	5/	Ž	4	13	06	. (4	! 2	9	Į -	\$7.	9/2	55	=	
	}		-		******	ļ <u>-</u>	i	i	i	1	Ì	i	.i	i	Į	1	i	ì	i	!			į	į	・フ	. 9	1 1	1161	
	<u> </u>		إ				15	4	à (2	+	10	40	5 (26	7	} +	17	3 C	6(15	73	- (/	32	00	1.6	B	₹
	-		<u>۔ ح</u>		, 4 40 140		טע				ļ	<u> </u>	1	ļ 		<u> </u>							1	: !			2.		ļ.,
	ا		سروان. المرأد		4000 100		0		†	Í	<u> </u>			j	•		ļ						l.		i		:		J
£				نبر ا		3		es o	7	27	2°C	106)+	J.	401	4	1,90	10	1)+	13	26	//2	3	06	۲ (3.	O	<i>(</i> 4/,8	ا إ
*****	7	14.			h , 1			Z			·[1 2 2 2 2 2 2	1					1					-	6	70	ر	06]	Ļ
		17	1	2	71	J	74	0/	2	יתר	D	ہۃ(10	410	1	35	ijo	3	4	30	6/	12	31/)·	13:	ZD!	(), L	1211	<u>کی</u>
	ļ Ī	بع. ا		.Z.	., \$4-	i,/G. ?	<u>بر</u> ا			1	1	Kimah.							<u>.</u>	-		= 0	1. 1.	3,	D				
2		2			•••		·j	-i	1		.i		,	1			1								i i				
	عيرو	صب	7		Δ,	<u></u>	10	14/	1.	ナー	į.,,	بر).	1-16	<i>Ψ</i> 0.	ID.	91	1/1/	15	4 1	38/	12	6	21/1	×)	3	2/6	10	518	
	ļ	<u>.</u>		2	2.7.		12.1	45.6.5). J.U	بر. د.		عبر _ا یم	<u> </u>							1	=	13	4	1.1	F		518	1
			٠.	<u>-</u>	2	 7	V97)	4)7	10	S0/	1.11	~ \ ~	11	40	16	14	Z	J.)	11	30/	17	5	81	(عرا	+3,	20/	55	90%	ø
-14			مي				1 1			وري					, transaction				-d	1			36						1
,-		-				ļ	ļ,	4			 			.,L.,,	- 	1		·	İ		<u>.</u>		صديد.	-	,		1		Ì
• • • • • •	ļ]		[ļ	ļ	-ļ ļ			·	· •	-		-1.		-	-	1				1	[;
	ļ	ļ	<u>ļ</u>		14 *****		-	-i			 	<u> </u>	1:			· [·	•	•[•···	·[·····		1		}			
	į			٠	•				· • · · · · ·		·					1				-			··[·····	1					*******
***	.j	 .į				-									•	·			•••	·		į							-

Radionuclide	Activity Detected	Specific Activity	Activity Detected	Equiv. CaCO ₃ Concentra
	(pC/L)	(C/g)	(mg/L)	(mg/L)
U-234	1.89E+04	6.17E-03	0.003063209	0.001309064
U-235	5.66E+02	2.14E-06	0.264485981	0.112547226
U-238	2.10E+02	3.33E-07	0.830830631	0.264970853
Pu-238	2.24E+02	17,39	1.2881E-08	5.41217E-09
Pu-239	1.05E+02	8.13E-02	1.71289E-06	7.16689E-07
Arr-241	1.97E+02	3.24	6.08025E-08	2.52292E-08
Cm-242	U (8.61)	3.32E+03	NA	NA NA
Cm-243	8.42E+01	46	1.39565E-09	5.74342E-10
Np-237	U (26.7)	7.05E-04	NA NA	NA NA
Sr-90	2.03E+06	141	1.43972E-05	1.59968E-05
Ag-108m	U (776)	6.37E+02	NA NA	NA
Ag-110m	U (1270)	4.66E+03	NA	NA
Am-241	U (1350)	3.24	NA NA	NA
Ce-144	U (7530)	3.19E+03	· NA	NA
Co-58	U (2160)	3.16E+04	NA .	NA
Co-60	1.55E+04	1.13E+03	1.37168E-08	2.28614E-08
Cs-134	U (734)	1.30E+03	NA NA	NA
Cs-137	2.90E+06	87	3.33333E-05	2.43309E-05
Eu-152	U (4860)	1.85E+02	NA	NA
Eu-154	U (1660)	1.45E+02	NA	NA
Ē⊔-155	U (2420)	1.27E+03	NA	NA
Mn-54	U (755)	7.98E+03	NA	NA
Nb-95	U (2400)	3.93E+04	_ NA	NA
Ra-226	U (1260)	9.88E-01	NA	NA
Ru-103	U (12900)	3.21E+04	. NA	NA
Ru-106	U (9430)	3.36E+03	NA	NA
Sb-125	U (3870)	1.06E+03	NA	NA
U-235	U (1340)	2.14E-06	NA	NA
Zn-65	U (1730)	8.20E+03	NA .	NA
Zr-95	U (4300)	2.10E+04	NA	NA
l-129	U (252)	1,63E-04	NA NA	NA
H-3	3.04E+07	9.64E+03	3.15353E-06	0.000105118
Ni-63	2.88E+05	61.7	4.88775E-06	7.40912E-06

^{*}mg/L = $(pC/L)^{-12}(C/pC_i)^{2}10^{3}(mg/g)/Specific Activity (C/g)$

^{*}equiv. CaCO₃ was calculated assuming divalent radionuclide

Radionuclide	Activity Detected	Specific Activity	Activity Detected	Equiv. CaCO3 Concentr
	(pC/L)	(C/g)	(mg/L)	(mg/L)
U-234	3.86E+04	6.17E-03	0.006256078	0.002873538
U-235	1.60E+03	2.14E-06	0.747863551	0.318154703
U-238	4.99E+02	3.33E-07	1,498498498	0.629621218
Pu-238	4.75E+02	17,39	2.73145E-08	1.14767E-08
Pu-239	2.83E+02	8.13E-02	4.61664E-06	1.93165E-06
Arn-241	5.89E+01	3,24	1.8179E-08	7.54318E-09
Cm-242	U (4.96)	3.32E+03	NA	NA NA
Cm-243	1.62E+01	48	3.52174E-10	1.44928E-10
Np-237	U (27.6)	7.05E-04	NA	NA
Sr-90	4.90E+06	141	3.47518E-05	3.86131E-05
Ag-108m	U (3960)	6.37E+02	NA	NA
Ag-110m	U (7120)	4.66E+03	NA	NA
Am-241	U (15900)	3.24	NA	NA NA
Ce-144	U (37800)	3.19E+03	NA	NA
Co-58	U (1600)	3.18E+04	NA	NA
Co-60	1.30E+04	1.13E+03	1.15044E-08	1.9174E-08
Cs-134	U (754)	1.30E+03	NA	NA
Cs-137	1.35E+07	87	0.000155172	0.000113285
Eu-152	U (4760)	1.85E+02	NA	NA
Eu-154	U (1820)	1.45E+02	NA	NA
Eu-155	U (14400)	1.27E+03	NA	NA
Мп-54	U (716)	7.98E+03	NA	NA
Nb-95	U (1960)	3.93E+04	NA	NA
Ra-226	U (4100)	9.88E-01	NA	NA
Ru-103	U (36000)	3.21E+04	NA	NA
Ru-106	U (48200)	3.38E+03	NA NA	NA
Sb-125	U (18400)	1,06E+03	NA	NA
U-235	U (8450)	2.14E-06	NA	NA
Zn-65	U (1700)	8.20E+03	NA	NA
Zr-95	U (3210)	2.10E+04	NA	NA
1-129	U (169)	1.83E-04	NA	NA
H-3	1.02E+08	9.64E+03	1.05809E-05	0.000352697
NI-83	4.48E+05	81.7	7.26094E-06	1.15253E-05

^{*}mg/L = $(pC/L)^{10^{-12}}(C/pC_1)^{10^{3}}(mg/g)$ /Specific Activity (C/g)

^{*}equiv. CaCO₃ was calculated assuming divalent radionuclide

Radionuclide	Activity Detected	Specific Activity	Activity Detected	Equiv. CaCO3 Concentr
	(pC/L)	(C/g)	(mg/L)	(mg/L)
U-234	1.33E+04	6.17E-03	0.002155592	0.000921193
U-235	4.01E+02	2.14E-06	0.187383178	0.079737522
U-238	1.35E+02	3.33E-07	0.405405405	0.170338406
Pu-238	3.83E+01	17.39	2.20242E-09	9.25385E-10
Pu-239	1,97E+01	6.13E-02	3.2137E-07	1.34465E-07
Am-241	3.18E+01	3.24	9.81481E-09	4.07254E-09
Cm-242	U (6.18)	3.32E+03	NA	NA
Cm-243	U (6.28)	46	NA	NA
Np-237	U (36.4)	7.05E-04	NA	NA
Sr-90	1.23E+07	141	8.7234E-05	9.69267E-05
Ag-108m	U (343)	6.37E+02	NA	NA
- Ag-110m	U (906)	4.66E+03	NA	NA
Am-241	U (1780)	3.24	NA	NA
Ce-144	U (3000)	3.19E+03	NA	NA
Co-58	U (284)	3.16E+04	- NA	NA
Co-60	1.48E+04	1,13E+03	1.30973E-08	2.18289E-08
Cs-134	4.49E+02	1,30E+03	NA .	NA
Cs-137	4,23E+06	87	4.86207E-05	3.54896E-05
Eu-152	U (893)	1.85E+02	NA	NA
Eu-154	U (213)	1.45E+02	NA NA	NA
Eu-155	U (1170)	1.27E+03	NA	NA
Mn-54	U (106)	7.98E+03	NA	NA
Nb-95	U (319)	3.93E+04	NA	NA
Ra-226	U (332)	9.88E-01	NA	NA
Ru-103	U (5640)	3.21E+04	NA	NA
Ru-106	U (4080)	3.36E+03	NA	NA
Sb-125	U (1900)	1.06E+03	NA	NA
U-235	U (533)	2.14E-06	NA	NA
Zn-65	U (237)	8.20E+03	NA	NA NA
Zr-95	U (549)	2.10E+04	NA	NA NA
1-129	U (108)	1.63E-04	NA	NA
H-3	6.09E+06	9.64E+03	8.31743E-07	2.10581E-05
Ni-63	2.05E+05	61.7	3.32253E-06	5.27385E-06

^{*}mg/L = $(pC/L)^*10^{-12}(C/pC_i)^*10^3(mg/g)/Specific Activity (C/g)$

[&]quot;equiv. CaCO₂ was calculated assuming divalent radionuclide

	Tank V-9, Prelli	minary Liquid Pha	se Radioactive M	laterial
Radionuclide	Activity Detected	Specific Activity	Activity Detected	Equiv. CaCO3 Concentration
	(pC/L)	(C/g)	(mg/L)	(mg/L)
U-233	1.24E+04	6.17E-03	0,00201005	0.000862683
U-234	2.11E+05	6.17E-03	0.034197731	0.014614415
U-235	6.90E+03	2.14E-08	3.224299065	1.372042155
U-236	3.26E+03	3.33E-07	9.78978979	4.148216013
U-238	9.72E+02	3.33E-07	2.918918919	1.226438521
Pu-238	1.70E+05	0.13E-02	0.002773246	0.00116523
Pu-239	4.53E+04	6.13E-02	0.000738989	0.0003092
Алл-241	4.02E+04	3.24	1,24074E-05	5.1483E-06
H-3	3.53E+08	9.64E+03	3.66183E-05	0.001220609
Cm-244	5.21E+03	46,1062	1.13E-07	4.63115E-08
Np-237	2.00E+02	7.05E-04	0.000283688	0.0001197
Total Sr	4.90E+06	141	3.47518E-05	3.86131E-05
Co-80	1.18E+03	1.13E+03	1.04425E-09	1.74041E-09
Cs-137	4.20E+05	87	4.82759E-06	3.52379E-06
Eu-152	5.66E+02	1.85E+02	3.05946E-09	2.0128E-09
Eu-154	2.72E+02	1.45E+02	1.87586E-09	1.21809E-09
		total	15 97109015	6 78417117R

[&]quot;mg/L = $(pC/L)^{2}10^{-12}(C/pC_{i})^{2}10^{3}(mg/g)$ Specific Activity (C/g)

^{*}equiv. CaCO3 was calculated assuming divalent radionuclide

Attachment 2
Process Flow Diagrams/Mass Balance

				TANK V-	TANK V-1 MASS BALANCE	ALANCE				
STREAM NO.		-	2	r	•	5	9	7	8	LDR WASTERNA TER
STREAM DESCRIPTION		SLUDGE HIC INFLUENT	13	CH FEED	원	F2 FEED	FEED	DAY TANK	EFFLUENT	TREATMENT STANDARD
LOW RATE	3	10	10	10	10	10	10	10	10	ı
OLUME	3	1684	844	944	149	11 9	644	9	644	1
	MaA	0.84	0.84	0.84	0.84	0.84	0.84	9 0:0	9.0	0.69
ERCURY	Tom V	0.369	0.369	0.369	0.369	0.369	0.369	0.018	0.018	0.15
ETRACHI OROCTHENE	ma/A	0.14	0.14	0.14	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.056
RICHLOROETHENE	ma/L	0.18	0.16	0.16	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.054
	Non	99	99	92	2	< 0.3	< 0.3	< 0.3	< 0.3	VARIES
Se_90	oCi/L	7.708 E + 06	2.03 E + 06	203 E + 06	2.03 E + 06	2.03 E + 06	203 E + 06	2.03 E + 05	2.03 E + 05	1.
	VIZ	1	2.90 E + 06	2.90 E + 06	2.90 E + 06	2.90 E + 06	2.90 E + 08	2.90 E + 05	2.90 E + 05	ı
OIL & GREASE	7	4.17	4.17	97.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1
TOTAL SUSPENDED SOLIDS	maA	-	8	-	-		<1	۲,	-	t
COCCHIC COAMTY		100	5	8	-8	£.00	8.	8	1.00	'

SLUDGE HIC INFLUENT

STREAM DESCRIPTION STREAM NO.

FLOW RATE VOLUME

19 0.563 0.563 0.563 0.563 0.079 0.079 0.68 0.63 0.63

TANK V-9 CONCENTRATIONS

	HG1	WASTEWATER TREATMENT STANDARD	1	ı	0.054	VARIES	1	ı	1	1	8.
	8	EFFLUENT	10	556	< 0.01	< 0.5	4.90 E + 05	1.35 E + 06	< 0.1	<1	1.00
	7	DAY TANK	10	556	< 0.01	< 0.5	4.90 E + 05	1.35 E + 08	< 0.1	·	1.00
	9	IX FEED	10	929	< 0.01	< 0.5	4.90 E + 06	1.35 E + 07	< 0.1	۲,	1.00
LANCE	Ş	F2 FEED	10	256	< 0.01	< 0.5	4.90 E + 06	1.35 E + 07	< 0.1	\ \ -	1:00
TANK V-2 MASS BALANCE	+	CH FEED	10	556	0.02	2	4.90 E + 08	1.35 E + 07	< 0.1	Ţ	1:00
TANK V-2	r	RED FEED	10	556	0.30	105	4.90 E + 06 4.90 E + 06 4.90 E + 06 4.90 E + 06	1.35 E + 07	-	-	1.00
	2	£	10	256	0.30	501	4.90 E + 06	1.35 E + 07	1.	26.7	1.00
	-	SLUDGE HIC INFLUENT	10	1596	0.30	105	1.096 E + 07	8.192 E + 08	->	1	1.02
			8	₹	TA V	Ma/L	750	720	Mg/L	MaA	
	STREAM NO.	STREAM DESCRIPTION	FLOW RATE	VOLUME	TRICHLOROFTHENE	201	06-80	Ce-137	OIL & GREASE	TOTAL SUSPENDED SOLIDS	SPECIFIC GRANTY

6.405 E + 06 5.590 E + 06

		CH GRANULATE CARBON	, ر	FZ MICKON	IX ION EXCHA				NOTE: CEE CIVIDE A 1 EOD	NOTE: SEE FISONE +-1 TON	C 7 10101
	J.D.R	WASTEWATER TREATMENT STANDARD	1	t	0.054	VARES	ι	t	ι	ţ	ì
	8	EFFLUENT	10	6995	× 0.01	< 0.5	1.23 E + 06	4.23 E + 05	< 0.1	<u>د ا</u>	1:00
	7	DAY TANK	01	9669	< 0.01	< 0.5	1.23 E + 06	4.23 E + 05	< 0.1	<1	1.00
	g	KED XI	10	6995	< 0.01	< 0.5	1.23 E + 07	4.23 E + 06	< 0.1	<1	8.
LANCE	2	0334 2.4	10	6995	< 0.01	< 0.5	1.23 E + 07	4.23 E + 06	< 0.1	<1	1.00
TANK V-3 MASS BALANCE	•	CH FEED	10	6995	0.01	2	1.23 E + 07	4.23 E + 08	< 0.1	· .	1.00
TANK V-3	n	HED TEED	10	6995	0.20	105	1.23 E + 07	4.23 E + 06	9.1	5	1,00
1			П	Γ	Г		7				

TEG	EGEND;
£	GRANULATED ACTIVATED
	CARBON
<u>=</u>	OIL & GREASE FILTER
F2	1 MICRON BAG FILTER
×	ION EXCHANGE

NOTE: SEE FIGURE 4-1 FOR PROCESS FLOW DIAGRAM

V-TANK SLUDGE REMOVAL/WATER TREATMENT PROCESS FLOW MASS BALANCE TABLES FIGURE 4-2.

10 6995 0.20 1.23 E + 07 4.23 E + 06 4.23 E + 06 65.3 65.3

10 8301 0.20 105 2.162 E + 07 7.598 E + 06 4.29

FLOW RATE
VOLUME
TRICHLOROCTHENE
TOC
SA-90
CS-137
TOL & GREASE
TOTA SUSPENED SOLDS
SPECIFIC GRANTY

1.02

Œ

SLUDGE HIC INFLUENT

STREAM NO. STREAM DESCRIPTION

		2	3	+	5	9	7	š
	122	Ŀ	нэ	ъ	F2	IX FEED	WATER HIC FEED	WASTEWATER TREATMENT STANDARD
-	2	10	10	10	10	10	9	1
CAL 3	3706	1763	1763	1763	1763	1763	1763	1
.0 \\ \frac{76m}{}	0.317	0.317	0.317	0.317	0.317	0.317	0.016	0.69
	0.152	0.152	0.152	0.152	0.152	0.152	0.008	0.15
L	1.194	1,194	1.194	1.194	1.194	1.194	090.0	3.98
	132	0.132	0.132	0.132	0.132	0.132	0.007	0.69
L	0.039	0.039	0.039	< 0.01	< 0.01	< 0.01	\ 0.04	0.058
	35.602	35.602	35.602	1.80	< 0.05	< 0.05	< 0.05	0.054
_	5.008	5.008	5.008	0.25	< 0.01	< 0.01	< 0.01	0.089
_	5.095	5.095	5.095	0.25	< 0.01	< 0.01	< 0.01	0.054
	0.0057	0.0057	0.0057	< 0.01	< 0.01	< 0.01	< 0.01	0.055
76m	0.0068	0.0068	0.0068	< 0.01	< 0.01	< 0.01	< 0.01	0.038
	0.0031	0.0031	0.0031	< 0.01	< 0.01	< 0.01	< 0.01	0.0055
	0.0717	0.0717	0.0717	< 0.01	< 0.01	< 0.01	< 0.01	0.11
	0.0717	0.0717	0.0717	< 0.01	< 0.01	< 0.01	< 0.01	0.77
	0.0087	0.0087	0.0087	< 0.01	< 0.01	< 0.01	< 0.01	0.039
₩ ₀	28	8	88	+	< 0.5	< 0.5	< 0.5	VARIES
PG/L 1,341 E +	E + 07	6.70 E + 06	6.70 E + 06	6.70 E + 06	6.70 E + 06	6.70 E + 08	6.70 E + 05	1
pd/L 7,369 E	E + 96	6.13 E + 06	6.13 E + 06	6.13 E + 06	6.13 E + 06	6.13 E + 06	6.13 E + 05	1
mg/L 2	2.96		1.00	< 0.1	< 0.1	< 0.1	< 0.1	
√6m	1	32.1	1	· ·	<1	۲۱	۲,	**
_	.02	8.	8	1.00	8	8:	8	,

LEGEND:
CH GRANULATED ACTIVATED
CARBON
FI OIL & GREASE FILTER
F2 1 MICRON BAG FILTER
F3 BARTLETT FILTER,
20x2 POLYPROPYLENE
ELEMENT
IX ION EXCHANGE

NOTE: SEE FIGURE 4-3 FOR PROCESS FLOW DIAGRAM

FIGURE 4-4.
V-TANK DRUM FILLING AND DEWATERING
PROCESS FLOW COMPOSITE MASS BALANCE TABLE

CALCULATION COVER SHEET

Project:	INEEL V-Ta	nk Waste				Number of Sheets:
Site:	Test Area N	orth (TAN) Was	te Area Group (W	(G) 1 Techn	ical Support Fac	cility (TSF) 09 & 18
Calculation Number:	ABQ13 – HF	P005	Wor Num	c Order ber:	12393.002.00	01
Subject:			V-Tank Pipe Was and Classification			h Respect to DOT
						•
Rev#	Date:	Revision:	Calculated by	: C	hecked by:	Approved:
Rev#	Date: 6/27/01	Revision: 90% Polish	Calculated by Gordon Harris Ken Schaus		hecked by: Keshian	Approved:
			Gordon Harris	Berg K		Approved: Dan Brennecke
RAA	6/27/01	90% Polish	Gordon Harris Ken Schaus	Berg k	(eshian	

Problem Statement:

Determine the disposal and packaging requirements for the pipe and tanks (assuming that it contains a uniformly distributed residue on the inside of the pipe). Determine the amount of pipe that can be shipped in one package that does not exceed a *Type A quantity* (per the DOT definition specified at 49 CFR §173.403).

Determine the quantity of sludge heel that can remain in a tank (assuming that it contains a uniformly distributed residue on the inside of the tank) that does not exceed a *Type A quantity* (per the DOT definition specified at 49 CFR §173.403).

Method of Solution:

Pipe:

Utilizing standard mathematical formulas for geometric shapes and standard constants for metric conversions, calculate the volume per foot of 4 and 6-inch diameter pipe and convert this volume to gallons. Next, using characterization data and volume estimates from references above, calculate the total maximum activity of the sludge or solid phase for Tank V-3. Finally, calculate the maximum (total) linear feet of pipe that can be determined to not exceed a Type A quantity per package as specified in 49 CFR §173.403.

Then, assume that the maximum linear feet of pipe will be packaged into a suitable container in which the volume of the waste container is not greater than 10% of the volume of waste. Based on the final container volume determines the 10 CFR 61.55 classification.

Tank:

Utilizing standard mathematical formulas for geometric shapes and standard constants for metric conversions, calculate the approximate volume of sludge heel in gallons that can remain in tank upon completion of contents removal. Next, using characterization data and volume estimates from references above, calculate the total maximum activity of the sludge or solid phase for Tank V-3. Finally, calculate the maximum (total) amount of sludge that could remain on the inside of the tank that can be determined to not exceed a Type A quantity per package as specified in 49 CFR §173.403.

Then, assuming that the above waste is stabilized within the tank using a suitable solidification media, determine the 10 CFR 61.55 classification based on the solidified waste volume.

Calculation:

Input data, specifications, and applicable regulatory criteria into Excel 97 (or DOT) spreadsheets that have been designed and validated to determine appropriate DOT shipping criteria and 10 CFR §61.55 classification. Note that these spreadsheets are attached as referenced herein.

Note: The DOT spreadsheet contains formulas that have been validated or "check printed" to ensure cells are referenced correctly and arithmetic operations and algebraic calculations are correct. The spreadsheet is then "locked" using the password protection function. The values and subsequent determinations that the algebraic formulas calculate have been independently verified using RADCALC software available through the DOE/NTP website. Calculations are also independently verified using a Hewlett-Packard model 48G+ hand held calculator.

Assumptions:

- 1. Each pipe contains a uniformly distributed residue on the inside that is .25 inches thick for both the 4 and 6-inch pipes.
- 2. Evaluate the 6-inch pipe with only 1/16th inch of waste to determine the disposal requirements.
- 3. Tank V-3 is assumed to have the highest representative activity of all V-Tank solid phase wastes and is therefore suitable to represent the worst case scenario for determining the volume limit of ancillary tank pipe and tank sludge heel for packaging and disposal.
- 4. In accordance with Low-level Waste Licensing Branch Technical Position on Radioactive Waste Classification (May 1983, Rev. 0); (c)(2): Radionuclide concentrations should be determined based upon

- volume or weight of the final waste form, or (3) in many cases, the volume used for waste classification purposes may be considered to correspond to the volume of the waste container.
- 5. The tank contents can be uniformly distributed within a suitable solidification media.
- 6. This evaluation does not evaluate V-Tank wastes for compliance with the waste acceptance criteria (WAC) of any disposal facility or with respect to RCRA/TSCA constituents.
- 7. The numbers derived by the DOT spreadsheets should be used as estimates only. The determinations made by interpretation of the data in the DOT spreadsheets should be carefully considered with respect to the quality of the radiological characterization data provided.
- 8. With regards to the characterization data, when a radionuclide was not detected, its detection limit was used as a conservative estimate. Note that this conservative assumption has essentially no effect on the overall determinations.
- 9. Th-234 and Pa-233 are assumed to be in secular equilibrium with the parent radionuclides, U-238 and Np-237 respectively; their activities have been added as appropriate.
- 10. In accordance with 49 CFR §173.433 requirements, the activity of Pu-241 has been added at 9.52 times the activity of Am-241.

Sources of Data:

Characterization Data from:

Comprehensive Remedial Investigation/Feasibility Study (RI/FS) for Test Area North Operable Unit 1-10 at INEEL, DOE/ID-10557, November 1997, Dept. of Energy/Idaho Operations Office, Idaho Falls, ID.

V-Tank Waste Volumes from:

Memorandum from Carolyn S. Blackmore to J. Todd Taylor, 03/10/98, *Criticality Safety Issues Associated With The Test Area North V-Tanks* – CSB-004-98, Lockheed Martin Idaho Technologies Company

Formulas for Geometric Calculations:

CRC Standard Mathematical Tables, 26th Edition, William H. Beyer, Ph.D., CRC Press, Inc. Boca Raton, Florida

Conversion Factors and Constants:

The Health Physics and Radiological Health Handbook, Revised Edition, Edited by Bernard Schleien, 1992, Scinta, Inc. Silver Spring, Maryland.

Regulatory Requirements from:

49 CFR 171-178, October 2000, "Transportation," Parts 171 through 178, "General Information, Regulations, and Definitions, Hazardous Materials Tables, and Shipping and Packaging Requirements," Code of Federal Regulations, Office of the Federal Register.

10 CFR 61, October 2000, "Energy," Part 61, "Licensing Requirements for Land Disposal of Radioactive Waste," Code of Federal Regulations, Office of the Federal Register.

Issuance of Final Branch Technical Position on Concentration Averaging & Encapsulation, revision in part to waste classification technical position, January 17, 1995, Nuclear Regulatory Agency, Washington D.C.

Low-level Waste Licensing Branch Technical Position on Radioactive Waste Classification, May 1983, Rev. 0, Nuclear Regulatory Commission, Washington, D.C.

Calculation:

Piping:

Referring to the Attachments 1 through 3, the radionuclide activities used in these spreadsheets are from the characterization data provided in *Comprehensive Remedial Investigation/Feasibility Study* (RI/FS) for Test Area North Operable Unit 1-10 at INEEL (DOE/ID-10557, November 1997), which was provided by INEEL personnel in electronic format (i.e., Excel spreadsheets). The characterization data was converted from picocuries per gram (pCi/g) to curies (Ci). Average data values were then calculated for each radionuclide for the Tank V-3 solid or sludge phase. The solid or sludge density was converted from the applicable Tank V-3 analytical data and converted to g/cc.

The total activity for Tank V-3 was then calculated using average activities (refer to attachment 1). The data was then copied into another DOT spreadsheet manipulating the volume of waste, weight, and percent of total activity before copying. The amount of waste and percent activity is dependent upon a reasonable assumption of the amount of sludge residue remaining in the pipe (refer to attachment 2). The total linear feet of pipe allowed per package that will not exceed a Type A quantity, is a function of the total amount of sludge per package that does not exceed a Type A quantity. The total amount of sludge per package (that does not exceed a Type A quantity) can be determined by plotting a graph of gallons versus Type A Package unity calculation and then interpolating the number of gallons at 99 percent of the Type A quantity limit. Once the total amount of sludge per package is known, the dividend of the total amount of sludge per package and the amount of sludge in one linear foot of pipe is the total amount of pipe allowed per package that will not exceed a DOT Type A quantity.

The volume per linear foot of 4 and 6-inch diameter pipe and the volume and weight of sludge per linear foot are calculated in attachment 4. The results of the analysis shows that the pipe can be packaged as LSA II materials but because of the Sr-90 levels assumed, even 1/16 inch of sludge results in the pipe being classified as a Class B waste. (Attachment 2)

Tank:

The spreadsheets labeled MT Tank with residue, was used to estimate the DOT Type for the V-3 tank. The radionuclide activities used in this spreadsheets are from the characterization data provided in *Comprehensive Remedial Investigation/Feasibility Study* (RI/FS) for Test Area North Operable Unit 1-10 at INEEL (DOE/ID-10557, November 1997). The characterization data was converted from picocuries per gram (pCi/g) to curies (Ci). Average sludge sample data values were used when calculating each radionuclide for the Tank V-3 solid or sludge heel. The solid or sludge density was converted from the applicable Tank V-3 analytical data and converted to g/cc.

The total activity for a 17.26-gallon sludge heel remaining in Tank V-3 was then calculated using average activities. The sludge heel is assumed to be uniformly distributed along the 19.5-foot length of tank. The data was then copied into another DOT spreadsheet using the 17.26-gallon volume of waste, weight, and percent of total activity. The amount of waste and percent activity is dependent upon a reasonable assumption that the amount of sludge heel remaining in the tank pipe can be achieved. The 17.26-gallon volume of sludge remaining in the tank, combined with the volume of the tank, is a goal that when using average activity levels. This quantity results in a classification of the Tanks as Class A surface contaminated debris, which can be shipped as LSA II quantity. The actual amount of sludge per tank (that does not exceed a LSA II quantity) will be determined by analysis of the actual waste stream and by plotting a graph of gallons versus LSA II Package unity calculation and then interpolating the number of gallons at 99 percent of the LSA II quantity limit against the actual activity of the sludge heel. IN reality the controlling factor is the total curies of Sr-90 that is determined in the sludge, as that is what is controlling the determination that the waste is a Class A waste. Under the above condition, the waste is Class A, but the addition of any more curries of Sr-90 would result in the Waste being classified as Class B.

Discussion:

Piping:

To determine the respective amount of activity that the sludge represented in a foot of pipe, the total activity in the total sludge or solid phase of Tank V-3 needs to be determined (refer to Attachment 1). The DOT spreadsheet entitled "V-3 All Sludge AVG" analyzes the 652 total gallons of sludge or solid phase waste in Tank V-3. For a 6-inch pipe, with 1/8th inch of contamination or 0.038 gallons, in one foot of pipe would represent 5.8E-03 percent of the total (i.e., 652 gallons) of Tank V-3 sludge or solid phase waste. Therefore, L:WPNINEEL Draft Final/Calculations Draft Final/ABQ13-HP005 RAB/ABQ13-HP005 RAB/ABQ

the individual radionuclide activities for the total Tank V-3 can be multiplied by 5.8E-05 to determine the activities that would be present in 0.038 gallon (refer to Attachment 2). These values can then be used to plot a graph of total gallons of sludge versus the sum of the ratios of activities per A_2 for the total amount of sludge in the Tank V-3 and 0.038 gallons. Refer to Table 1.

Table 1. X and Y values for plotting the graph of total gallons of sludge In piping versus sum of the A₂ ratios

Description	Total gallons (x)	Sum of A ² ratios (y)
Total V-3 Tank sludge	652	35.9
Total V-3 sludge in 1 foot of pipe	0.038	0.00206

Using the graph of the values in Table 1(see attachment 2), the volume of sludge at 99 percent of the Type A quantity per package is 17.97 gallons. The total linear feet of pipe per package is (17.97 gallons) / (0.038 gallons/ft.) or 472 feet.

Tank:

Using the average sample values the 17.26-gallon volume of sludge heel distributed along the bottom of the tank will not exceed the DOT Type LSA II shipping requirements. Using a specific gravity of 1.25 g/cc, this amount of sludge will weigh approximately 179 lbs.

Conclusions and Recommendations:

Piping:

- 472 linear feet of 6-inch pipe can be placed into a DOT Type LSA II package and not exceed a Type A
 quantity per package. Since this quantity is so large the packaging of the pipe will not be an issue, as
 packaging will contain considerably less pipe
- 2. With respect to its radioactive constituents only, the pipe meets the definition of a low-level waste.
- 3. With respect to DOT transportation, the pipe would be a Class 7 Radioactive material.
- 4. With respect to DOT packaging, the pipe would meet the definition of a low specific activity II (LSA-II solid or UN2912) material and could be placed into excepted packaging (IP-2).
- 5. The amount of fissile material per package (2.28 grams actual) would be less than 15 g/pkg. and would therefore be considered "fissile excepted."
- 6. Since the contamination in the pipe will exceed the limits for Class A waste, the pipe will need to be flushed to remove lose contamination and to meet the goal of deposal as a Class A waste.

Tank:

- The goal for sludge remaining inside the tanks will be less than 17.26 gallons. A quantity < 17.26 gallons of sludge heel will meet the DOT Type LSA II package requirements and not exceed a Type A quantity per tank.
- 2. With respect to its radioactive constituents only, the tank meets the definition of a low-level waste.
- 3. With respect to DOT transportation, the tank would be a Class 7 Radioactive material.
- 4. With respect to DOT packaging, the tank with the 17.26 gallons of sludge heel would meet the definition of a limited quantity or low specific activity II (LSA-II solid) and could not be placed into excepted packaging.
- 5. The amount of fissile material per package (2.5 grams actual) would be less than 15 g/pkg. and would therefore be considered "fissile excepted."
- 6. Assuming 10% of the activity inside the tank is removable contamination, the tank would exceed the DOT SCO-II limits for removable contamination and would require Type A packaging.

Computer Source:

Hewlett-Packard Kayak XU800 with Microsoft Window NT, operating system and Office 97 software.

List of Attachments

Attachment	Title
1	DOT Spreadsheet entitled, "V-3 All Sludge AVG"
2	0.25 Inch Sludge per 4" and 6" Pipe per Linear Foot and 0.0625 Inch Sludge per 6" Pipe
3	Tank with 17.26 gal Residue
4	Volume and Weight Calculation for 4 and 6 Inch Pipe
5	Volume and Weight of V-Tanks and Contamination Prior to
	Removal from Ground

Attachment 1

DOT Spreadsheet entitled, "V-3 All Sludge AVG"

9:35 PM

Page 1 of 2

Units

Constants

W/AVG)
(Total)
Sludge
>
Tan
INEEL
₫.
ntainer

	3.70E+10 Bq/Ci
Section I. Weste Stream information	453.6 g/fb
Container Typ 10,000 gallon stainless steel tank (10' dia. X 19.5' le 1337 ft³ or 37.86 m³ exter	m³ external volume 1.00E-12 TBq/Bq or Ci/pCi
Description; 652 gallons of Studge	1000.00 g/kg
Note: assume solid phase volume of 652 gallons with density of 1.25 g/cc	1.00E+09 nCi/Ci
Container Container Container Container Waste External Vol.:st. Waste Vol.	
Gross Wt (ib) 3ross Wt (kg Tare Wt (ib Tare Wt (kg) Net Wt (kg) (m^3)	Dose survey from Sxxxxx on xx/xx/00 shows < mrem/hr OC.
6801.44 3085.13 0.00 0.00 3085.13 37.864 2.468	Radioactive liquid effluents from hot cells, labs, and decon facilities at TAN and IETF.
Note: Gross weight of contents = (652 gal.)x(1.25 g/cc)x(3785.412 cc/gal.)x(2.2046E-03 lb/g) ≠ 6801.44	EPA regulated hazardous COCs: Barium, Cadmium, Chromium, Lead, Mercury, Silver, VOCs, SV(
Section II. List the radionuciides and activities: perform DOT RAM, RQ, LTD QTY, and Type A Packaging checks	Packaging checke

Activity/gram	(Band)	1.78E+07	6.20E+08	7.79E+05	1.53E+05	5.56E+04	2.58E+04	1.49E+04	1.33E+04	1.10E+04	1.09E+04	1.09E+04	5.84E+03	5.62E+03	4.38E+03	3.51E+03	3.00E+03	2.61E+03	2.38E+03	1.82E+03	1.64E+03	1.39E+03	1.37E+03	1.24E+03	1.21E+03	7.75E+02	4.89E+02	5.95E+01	5.74E+01	5.56E+01	5.56E+01	3.92E+01	2.42E+01	2.42E+01	
LSA-II	og L spino	6.53E-02	4.59E-03	9.60E-06	1.41E-04	2.06E-03	1.90E-05	8.14E-06	5.47E-06	2.04E-05	2.01E-02	2.01E-05	1.08E-02	1.04E-02	1.80E-06	6.49E-07	1.24E-06	9.64E-07	4.40E-05	6.74E-04	2.02E-03	1.28E-06	5.08E-07	9.15E-07	2.24E-07	4.78E-07	1.81E-07	0.00E+00	0.00E+00	0.00E+00	1.03E-07	1.45E-06	4.47E-05	9.94E-09	
TRU Conc.	S S	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.09E+01	0.00E+00	5.84E+00	5.82E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.64E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.42E-02	0.00E+00	
Type A Pkg? DOT Fissile Mas:	è	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.72E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.98E-03	0.00E+00	0.00E+00	2.80E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.79E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.34E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Type A Pkg? 5	(m) (m) (m)	2.01E+01	1.42E+00	2.96E-03	4.36E-02	6.35E-01	5.85E-03	1.89E-03	1.69E-03	6.28E-03	6.21E+00	6.20E-03	3.33E+00	3.21E+00	5.55E-04	2.00E-04	3.81E-04	2.97E-04	1.36E-02	2.08E-01	6.25E-01	3.96E-04	1.57E-04	2.82E-04	6.92E-05	1.47E-04	5.58E-05	0.00E+00	0.00E+00	0.00E+00	3.17E-05	4.47E-04	1.38E-02	3.07E-06	
A2 Value LTD QTY Det. (TBa) mount/(10-3)4:	200 01 0100	2.01E+04	1.42E+03	2.96E+00	4.36E+01	6.35E+02	5.85E+00	1.89E+00	1.69E+00	6.28E+00	6.21E+03	6.20E+00	3.33E+03	3.21E+03	5.55E-01	2.00E-01	3.81E-01	2.97E-01	1.36E+01	2.08E+02	6.25E+02	3.96E-01	1.57E-01	2.82E-01	6.92E-02	1.47E-01	5.58E-02	0.00E+00	0.00E+00	0.00E+00	3.17E-02	4.47E-01	1.38E+01	3.07E-03	
A2 Value	·	1.00E-01	5.00E-01	3.00E+01	4.00E-01	1.00E-02	5.00E-01	9.00E-01	9.00E-01	2.00E-01	2.00E-04	2.00E-01	2.00E-04	2.00E-04	9.00E-01	2.00E+00	9.00E-01	1.00E+00	2.00E-02	1.00E-03	3.00E-04	4.00E-01	1.00E+00	5.00E-01	2.00E+00	6.00E-01	1.00E+00	Unlimited	Unlimited	Unlimited	2.00E-01	1.00E-02	2.00E-04	9.00E-01	
RQ Ratios		5.44E+02	1.91E+01	2.40E-02	4.72E-02	1.72E-01	7.91E-03	4.61E-03	4.10E-03	3.40E-02	3.36E+00	3.35E-02	1.80E+00	1.74E+00	1.35E-03	1.08E-03	9.27E-04	8.04E-04	7.34E-02	5.62E-02	5.07E-01	4.28E-04	4.24E-04	3.82E-03	3.74E-04	2.39E-04	1.51E-04	1.83E-03	1.77E-01	1.71E-03	1.71E-06	1.21E-04	7.46E-03	7.46E-07	
RQ limits		3.70E-03	3.70E-02	3.70E+00	3.70E-01	3.70E-02	3.70E-01	3.70E-01	3.70E-01	3.70E-02	3.70E-04	3.70E-02	3.70E-04	3.70E-04	3.70E-01	3.70E-01	3.70E-01	3.70E-01	3.70E-03	3.70E-03	3.70E-04	3.70E-01	3.70E-01	3.70E-02	3.70E-01	3.70E-01	3.70E-01	3.70E-03	3.70E-05	3.70E-03	3.70E+00	3.70E-02	3.70E-04	3.70E+00	
Activity/gram (Bo/gram)		6.53E+05	2.29E+05	2.88E+04	5.65E+03	2.06E+03	9.49E+02	5.52E+02	4.92E+02	4.07E+02	4.03E+02	4.02E+02	2.16E+02	2.08E+02	1.62E+02	1.30E+02	1.11E+02	9.64E+01	8.80E+01	6.74E+01	6.07E+01	5.13E+01	5.08E+01	4.58E+01	4.49E+01	2.87E+01	1.81E+01	2.20E+00	2.12E+00	2.06E+00	2.06E+00	1.45E+00	8.94E-01	8.94E-01	i
Activity (Ba)	Ì	2.01E+12	7.08E+11	8.89E+10	1.74E+10	6.35E+09	2.93E+09	1.70E+09	1.52E+09	1.26E+09	1,24E+09	1.24E+09	6.67E+08	6.42E+08	4.99E+08	4.01E+08	3.43E+08	2.97E+08	2.71E+08	2.08E+08	1.87E+08	1.58E+08	1.57E+08	1.41E+08	1.38E+08	8.85E+07	5.58E+07	6.79E+06	8.55E+06	6.35E+06	6.35E+06	4.47E+06	2.76E+06	2.76E+06	
% of Total A2 Fraction		5.61E+01	3.95E+00	8.26E-03	1.22E-01	1.77E+00	1.63E-02	5.28E-03	4.70E-03	1.75E-02	1.73E+01	1.73E-02	9.29E+00	8.95E+00	1.55E-03	5.58E-04	1.06E-03	8.29E-04	3.78E-02	5.79E-01	1.74E+00	1.10E-03	4.37E-04	7.87E-04	1.93E-04	4.11E-04	1.55E-04	0.00E+00	0.00E+00	0.00E+00	8.84E-05	1.25E-03	3.84E-02	8.54E-06	
Activity (Ci)		5.44E+01	1.91E+01	2.40E+00	4.72E-01	1.72E-01	7.91E-02	4.61E-02	4.10E-02	3.40E-02	3.36E-02	3.35E-02	1.80E-02	1.74E-02	1.35E-02	1.08E-02	9.27E-03	8.04E-03	7.34E-03	5.62E-03	5.07E-03	4.28E-03	4.24E-03	3.82E-03	3.74E-03	2.39E-03	1.51E-03	1.83E-04	1.77E-04	1.71E-04	1.71E-04	1.21E-04	7.46E-05	7.46E-05	
Nuclide		Sr-90	Cs-137	Ni-63	Co-60	Pu-241	Eu-154	Eu-152	Ru-103	Ce-144	Pu-238	Ru-106	Am-241	Pu-239	Sb-125	Eu-155	Zr-95	Nb-95	Ra-226	U-233	Cm-243	Ag-110m	Co-58	Cs-134	Zn-65	Ag-108m	Mn-54	U-235	⊦129	U-238	Th-234	Cm-242	Np-237	Pa-233	:

DOT regulated as Hazard Class 7 Radioactive Material

Contains a Reportable Quantity of a Hazardous Substance; use 'RQ(radionuclides)' as part of PSN ≥ Type A quantity; requires Type B Packaging Does NOT meet LTD QTY Exception; Check if LSA

Meets Low Specific Activity (LSA)-II material - Check <Type A quantity and use Radioactive material, LSA, n.o.s. as PSN >16 grams Fissile Material - use Radioactive material, fissile material, n.o.s. as PSN Reviewed by: Performed by:

Reviewed by:_

INEEL V-3 Tank Separate Sludge Heel Tank Calo Sept 26

9135 PM

V-3 All Studge AVG

Section III: Check radionuclides for listing on labels and shipping papers; Check reportable radionuclides per Envirocare WAC

Activity Conc. (Ci/m³)	1.44E+00 5.05E-01 6.34E-02 1.25E-02 4.53E-03	2.09E-03 1.22E-03 1.08E-03 8.97E-04 8.87E-04	4.78E-04 4.58E-04 3.57E-04 2.86E-04	2.45E-04 1.94E-04 1.48E-04 1.34E-04 1.13E-04 1.01E-04 1.01E-04 3.98E-05 6.32E-06 3.98E-05 4.85E-06 4.53E-06 4.53E-06 1.97E-06 1.97E-06
SNM (g)	Not applicable Not applicable Not applicable Not applicable 1 72E-03	Not applicable Not applicable Not applicable Not applicable 1.98E-03	Not applicable 2.80E-01 Not applicable Not applicable Not applicable	Not applicable Not applicable 5.79E-01 Not applicable
% of Total Activity Conc. Source Materia Activity (PCi/g) (kg)	Not applicable Not applicable Not applicable Not applicable	Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable	Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable	
Activity Conc. (pCi/g)	1.76E+07 6.20E+06 7.79E+05 1.53E+05 5.56E+04	2.56E+04 1.49E+04 1.33E+04 1.10E+04 1.09E+04	5.84E+03 5.62E+03 4.38E+03 3.51E+03	2.30E+03 2.38E+03 1.64E+03 1.64E+03 1.39E+03 1.37E+03 7.75E+02 4.89E+02 5.95E+01 5.56E+01 3.92E+01 2.42E+01
% of Total Activity	7.07E+01 2.48E+01 3.12E+00 6.12E-01	1.03E-01 5.98E-02 5.33E-02 4.41E-02 4.36E-02	2.34E-02 2.25E-02 1.75E-02 1.41E-02	1.20E-02 9.50E-03 7.30E-03 6.58E-03 5.66E-03 4.96E-03 4.86E-03 1.31E-04 2.38E-04 2.23E-04 2.23E-04 1.57E-04 9.69E-05
Activity (Ci)	5.44E+01 1.91E+01 2.40E+00 4.72E-01	7.91E-02 4.61E-02 4.10E-02 3.40E-02 3.36E-02	1.80E-02 1.74E-02 1.35E-02 1.08E-02	9.27 E-09 9.64 E-03 7.34 E-03 6.07 E-03 4.28 E-03 3.82 E-03 3.74 E-03 1.51 E-04 1.77 E-04 1.77 E-04 1.71 E
Nuclide	Sr-90 Cs-137 Ni-63 Co-60 Pu-241	Eu-154 Eu-152 Ru-103 Ce-144 Pu-238	Am-241 Pu-239 Sb-125 Eu-155 Zr-95	Ag-109 Na-226 U-233 Cm-243 Ag-110m Co-58 Co-58 Co-134 Zn-65 Ag-108m Mn-54 U-235 U-235 Th-234 Cm-242 Np-237 Pa-233
Cumulative A2 Fraction	5.61E+01 7.34E+01 8.27E+01 9.17E+01 9.56E+01	9.74E+01 9.97E+01 9.97E+01 9.98E+01 9.99E+01	9.99E+01 1.00E+02 1.00E+02 1.00E+02 1.00E+02	1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
% of Total Cumulative A2 Fraction A2 Fraction	5.61E+01 1.73E+01 9.29E+00 8.95E+00	1.77E+00 1.74E+00 5.79E-01 1.22E-01 3.84E-02 3.78E-02	1.75E-02 1.73E-02 1.63E-02 8.26E-03 5.28E-03	3.20E-03 1.25E-03 1.25E-03 1.10E-03 1.06E-03 8.29E-04 7.87E-04 4.11E-04 4.11E-04 1.55E-04 8.84E-05 8.54E-06 0.00E+00
Activity (Ci)	5.44E+01 3.36E-02 1.80E-02 1.74E-02	1.72E-01 5.07E-03 5.62E-03 4.72E-01 7.46E-05	3.40E-02 3.35E-02 7.91E-02 2.40E+00	4.016-02 1.366-03 1.216-04 4.286-03 9.276-03 8.046-03 3.826-03 1.086-02 4.246-03 3.746-03 1.716-04 7.466-05 1.716-04
Nuclide	Sr-90 Pu-238 Am-241 Pu-239 Cs-137	Pu-241 Cm-243 U-233 Co-60 Np-237 Ra-226	Ce-144 Ru-106 Eu-154 Ni-63	Cu-102 Ru-103 SP-125 Cm-242 Ag-110m Zr-95 Co-58 Co-58 Ag-108m Zn-65 Mn-54 Th-234 Pa-233 U-235 U-238

If #DIV/0! occurs in the Fraction of Waste Profile Column or the Does Nuclide Meet Waste Profile? Column of Section III, the nuclide is not included on the current profile and needs to be added.

Assume that Sr-90, Cs-137, and Ni-63 are major nuclides driving waste classification determination for Tank V-3 wastes

Table 2 limit (Ci/m^3) Radionucli Column 1 Column 2 V-3 All Sludge AVG

1.44E+00	5.05E-01	6.34E-02	14.08	0.04
150	44	7.0	Fractions:	Fractions:
0.04		3.5	of Frac	of Frac
			A Sum	В Ѕиш
Sr-90	Cs-137	Ni-63	Class A	Class F

ClassB Must stabilize using suitable solidification media and meet applicable 10 CFR 61.56 requirements

Attachment 2

0.25 Inch Sludge per 4" and 6" Pipe per Linear Foot and 0.0625 Inch Sludge per 6" Pipe

2.94E+07

1.17E-08 1.37E-01

2.84E-02 0.00E+00 2.83E+01

1.14E-02

4.84E-03

4.84E+00

1.01E-10 7.71E-02

3.72E+02 1.05E+00 3.84E+08 1,09E+06

8.54E-06 100.00%

1.01E-08 1.01E-08 1.04E-02

Np-237 Pa-233 Total

₩ 1 of 2

Con. 3 # .25" V-3 Tank Sludge in one foot of 4-inch plpe Note: based upon BTP Radioactive Waste Classification (May 1983)	J #.25" V-3 Tank Sludge in one foot of 4-inch plpe ed upon BTP Radioactive Waste Classification (Ma	c Sludge in o floactive Way	ne foot of 4 ste Classifik	Finch pipe	_	re final waste fo	orm volum	Rev.0), the final waste form volume may be used for 10 CFR 61.55 Classification	or 10 CFR 61.5	5 Classification		Constants 3.70E+10	Bo/Ci
Section I. Waste Stream Information	ste Stream In	formation		-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						g/lb
Description:	0088 gallons of Studge	epuls jo.:		-	Volume of 25.	Volume of ,25° studge in one foot of 4° pipe is 0088 gal.	ot of 4" pipe	is 0088 gal.			•	1.00E-12 F	fBq/Bq or Ci/pC
Note: assume solid phase volume of 0.088 gallons with density of 1.25 g/cc	id phase volume	of 0.088 gallon	s with density (i						1.00E+09	nCVCi
Gross WI (lb) Gross WI (kg) Tare WI (lb) Tare WI (kg)Net WI (kg) E 23	Container Gross Wt (kg)	Container Tare Wt (lb)	Container Tare Wt (kg)		Est. Waste Vol. (m3)	Est. Waste Vol. Final Waste Vol. (m3) (m3)		Dose survey from Sxxxx on xx/xx/00 shows <	Sxxxxx on xx/	cx/00 shows <	mem/hr OC.		į
0.33	Z,8,7	0.20	2.52	0.35	3.33E-04	2.47E-03		Radioactive liqu EPA regulated ha	ild effluents fro izardous COCs	Radioactive liquid effluents from hot calls, labs, and decon facilities at TAN and IETF. EPA regulated hazardous COCs: Barium, Cadmium, Chromium, Lead, Mercury, Sliver, VOCs, S	, and decon fa n, Chromium, L	cilities at TAN ead, Mercury, S	and IETF. ilver, VOCs, S'
Section II. List	the radionu	clides and ac	ctivities; per	rorm DOT R	AM, RO, LTD	Section II. List the radionuclides and activities: perform DOT HAM, RQ, LTD OTY, and Type A Packaging checks	A Packagir	ng checks					
Nuclide	Activity	% of Total	Activity	\ctivity/gran	RQ limits	RQ Ratios	A2 Value	A2 Value LTD QTY Det.	Type A Pkg?	Type A Pkg? 30T Fissile Mass	TRU Conc.	LSA-#	Activity/gram
	(Ci	A2 Fraction	(Bd)	(Bq/gram)	(TBq)	(amount/limit)	(TBq)	amount/(10-3)A2	(amount/A2)	(6)	(nCi/g)	Solids Frac	(bCi/g)
Sr-90	7.35E-03	5.81E+01	2.72E+08	7.68E+05	3.70E-03	7.35E-02	1.00E-01	2.72E+00	2.72E-03	0.00E+00	0.00E+00	7.68E-02	2.08E+07
Cs-137	2.58E-03	3.95E+00	9.55E+07	2.70E+05	3.70E-02	2.58E-03	5.00E-01	1.91E-01	1.91E-04	0.00E+00	0.00E+00	5.40E-03	7.30E+06
S-2	3.24E-04	8.26E-03	1.20E+07	3.39E+04	3.70E+00	3.24E-06	3.00E+01	4.00E-04	4.00E-07	0.00E+00	0.00E+00	1.13E-05	9.16E+05
09-00 1	6.36E-05	1.22E-01	2.35E+06	6.66E+03	3.70E-01	6.36E-06	4.00E-01	5.89E-03	5.89E-06	0.00E+00	0.00E+00	1.66E-04	1.80E+05
Pu-241	2.32E-05	1.77E+00	8.57E+05	2.42E+03	3.70E-02	2.32E-05	1.00E-02	8.57E-02	8.57E-05	2.32E-07	0.00E+00	2.42E-03	6.55E+04
EU-154	1.0/E-05	1.63E-02	3.95E+05	1.12E+03	3.70E-01	1.07E-06	5.00E-01	7.90E-04	7.90E-07	0.00E+00	0.00E+00	2.23E-05	3.02E+04
Bu-103	5.545-06	5.28E-03	2.30E+05	6.50E+02	3.70E-01	6.225-07	9.00E-01	2.56E-04	2.56E-07	0.00E+00	0.00E+00	7.22E-06	1.76E+04
Ce-144	4.58E-06	1.75E-02	1.70E+05	4.79E+02	3.70E-02	4.58F-06	2.00E-01	8.48F-04	8 48F-07	0.005+00	0.000	0.44E-06	1.5/5+04
Pu-238	4.53E-06	1.73E+01	1.68E+05	4.74E+02	3.70E-04	4.53E-04	2.00E-04	8.39E-01	8.39E-04	2.67E-07	1.28E+01	2.37E-02	1.285+04
Ru-106	4.52E-06	1.73E-02	1.67E+05	4.73E+02	3.70E-02	4.52E-06	2,00€-01	8.37E-04	8.37E-07	0.00E+00	0.00E+00	2.36E-05	1.28E+04
Am-241	2.43E-06	9.29E+00	9.00E+04	2.54E+02	3.70E-04	2.43E-04	2.00E-04	4.50E-01	4.50E-04	0.00E+00	6.88E+00	1.27E-02	6.88€+03
Pu-239	2.34E-06	8.95E+00	8.66E+04	2.45E+02	3.70E-04	2.34E-04	2.00E-04	4.33E-01	4.33E-04	3.78E-05	6.62E+00	1.22E-02	6.62E+03
Sp-125	1.82E-06	1.55E-03	6.74E+04	1.91E+02	3.70E-01	1.82E-07	9.00E-01	7.49E-05	7.49E-08	0.00E+00	0.00E+00	2.12E-06	5.15E+03
76.95	1.405-100	5.58E-04	0.41E+04	1.535+02	3.70E-01	1.455-07	2.001+00	2.70E-05	2.70E-08	0.00E+00	0.00E+00	7.64E-07	4.13E+03
56-dN	1.08E-06	8.29F-04	4.01E+04	1.13E+02	3.70F-01	1.08F-07	3,00E-01	5.14E-U5	3.14E-08	0.00E+00	0.00=+00	1.45E-06	3.54E+03
Ra-226	9.90E-07	3.78E-02	3.66E+04	1.04E+02	3.70E-03	9.90E-06	2.00E-02	1.83E-03	1.83E-06	0.00E+00	0.00F+00	5.18F-05	3.07E+03
U-233	7.58E-07	5.79E-01	2.81E+04	7.93E+01	3.70E-03	7.58E-06	1,00E-03	2.81E-02	2.81E-05	7.82E-05	0.00E+00	7.93E-04	2.14E+03
Cm-243	6.84E-07	1.74E+00	2.53E+04	7.15E+01	3.70E-04	6.84E-05	3.00E-04	8.43E-02	8.43E-05	0.00E+00	1.93E+00	2.38E-03	1.93E+03
Ag-110m	5.78E-07	1.10E-03	2.14E+04	6.04E+01	3.70E-01	5.78E-08	4.00E-01	5.34E-05	5.34E-08	0.00E+00	0.00E+00	1.51E-06	1.63E+03
58-134	5 155-07	7.87E-04	1 015,04	5.30E+01	3.70E-01	5.72E-08 5.15E-07	5.00E-01	2 015 05	2.125-08	0.00=+00	0.00E+00	5.98E-07	1.62E+03
Zn-65	5.05E-07	1 93F-04	1 87F+04	5.28F±01	3 70E-01	5.05F-08	2,00E+00	9.345.06	3.0 IE-00	0.005+00	0.000+00	1.08E-06	1.46E+03
Aq-108m	3.23E-07	4.11E-04	1.19E+04	3.38E+01	3.70E-01	3.23E-08	6.00E-01	1.99E-05	1 99F-08	0.005400	0.005+00	6.69E-07	7.43E+03
Mn-54	2.03E-07	1.55E-04	7.53E+03	2.13E+01	3.70E-01	2.03E-08	1.00E+00	7.53E-06	7.53E-09	0.00E+00	0.00E+00	2.13E-07	5.75E+02
U-235	2.48E-08	0.00E+00	9.16E+02	2,59E+00	3.70E-03	2.48E-07	Unlimited	0.00E+00	0.00E+00	1.13E-02	0.00E+00	0.00E+00	7.00E+01
F129	2.39E-08	0,00E+00	8.84E+02	2.50E+00	3.70E-05	2.39E-05	Unlimited	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.75E+01
U-238	2.31E-08	0.00E+00	8.56E+02	2.42E+00	3.70E-03	2.31E-07	Unlimited	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.54E+01
Th-234	2.31E-08	8.84E-05	8.56E+02	2.42E+00	3.70E+00	2.31E-10	2.00E-01	4.28E-06	4.28E-09	0.00E+00	0.00E+00	1.21E-07	6.54E+01
Cm-242	1.63E-08	1.25E-03	6.03E+02	1.705.400	3.70E-02	1.63E-08	1.00E-02	6.03E-05	6.03E-08	0.00E+00	0.00E+00	1.70E-06	4.61E+01
NP-237	1.016-08	3.84E-02 8.54E-06	3.72E+02	1.05E+00	3.70E+00	1.01E-10	2.00E-04	1.86E-03 4 14E-07	1.865-06	0.00E+00	2.84E-02	5.26E-05	2.84E+01
) !					,	1 1	1		4.146-10	U.COE+UC	0.00	1.17E-08	2.845.+01

DOT regulated as Hazard Class 7 Radioactive Material NOT an RO amount of a Hazardous Substance

Performed by:

INEEL V.3 Tank Separate Sludge Heel Tank Calc Sept 26 .xis

Date:

Type A quantity/package per 49 CFR 173.431(a); check if excepted quantity -> excepted packaging Does NOT meet LTD QTY Exception; Check if LSA

Reviewed by:

Meets Low Specific Activity (LSA)-II material - Check <Type A quantity and use Radioactive material, LSA, n.o.s. as PSN Meets criteria for Fissile Excepted Package per 49 CFR 173.453

This is a Low-level waste

:										
Nuclide	Activity	% of Total Cumu	Cumulative	Nuclide	Activity	% of Total	Activity Conc.	Source Material	SNM	Activity Conc.
	(C)	A2 Fraction A2 Fr	A2 Fraction		(C	Activity	(bCi/g)	(kg)	(b)	(Ci/m³)
Sr-90	7.35E-03	5.61E+01	5.61E+01	Sr-90	7.35E-03	7.07E+01	2.08E+07	Not applicable	Not applicable	2.98E+00
Pu-238	2.58E-03	1.73E+01	7.34E+01	Cs-137	2.58E-03	2.48E+01	7.30E+06	Not applicable	Not applicable	1.05E+00
Am-241	3.24E-04	9.29E+00	8.27E+01	Ni-63	3.24E-04	3.12E+00	9.16E+05	Not applicable	Not applicable	1,31E-01
Pu-239	6.36E-05	8.95E+00	9.17E+01	Co-60	6.36E-05	6.12E-01	1.80E+05	Not applicable	Not applicable	2.58E-02
Cs-137	2.32E-05	3.95E+00	9.56E+01	Pu-241	2.32E-05	2.23E-01	6.55E+04	Not applicable	2.32E-07	9.38Ę-03
Pu-241	1.07E-05	1.77E+00	9.74E+01	Eu-154	1.07E-05	1.03E-01	3.02E+04	Not applicable	Not applicable	4.32E-03
Cm-243	6.22E-06	1.74E+00	9.91E+01	Eu-152	6.22E-06	5.98E-02	1.76E+04	Not applicable	Not applicable	2.52E-03
U-233	5.54E-06	5.79E-01	9.97E+01	Ru-103	5.54E-06	5.33E-02	1.57E+04	Not applicable	Not applicable	2.24E-03
Co-60	4.58E-06	1.22E-01	9.98E+01	Ce-144	4.58E-06	4,41E-02	1.30E+04	Not applicable	Not applicable	1.86E-03
Np-237	4.53E-06	3.84E-02	9.99E+01	Pu-238	4.53E-06	4.36E-02	1.28E+04	Not applicable	2.67E-07	1.84E-03
Ra-226	4.52E-06	3.78E-02	9.99E+01	Ru-106	4.52E-06	4.35E-02	1.28E+04	Not applicable	Not applicable	1.83E-03
Ce-144	2.43E-06	1.75E-02	9.99E+01	Am-241	2.43E-06	2.34E-02	6.88E+03	Not applicable	Not applicable	9.85E-04
Ru-106	2.34E-06	1.73E-02	1.00E+02	Pu-239	2.34E-06	2.25E-02	6.62E+03	Not applicable	3.78E-05	9.48E-04
Eu-154	1.82E-06	1.63E-02	1.00E+02	Sb-125	1.82E-06	1.75E-02	5.15E+03	Not applicable	Not applicable	7.38E-04
Ni-63	1.46E-06	8.26E-03	1.00E+02	Eu-155	1.46E-06	1.41E-02	4.13E+03	Not applicable	Not applicable	5.92E-04
Eu-152	1.25E-06	5.28E-03	1.00E+02	Zr-95	1.25E-06	1.20E-02	3.54E+03	Not applicable	Not applicable	5.07E-04
Ru-103	1.08E-06	4.70E-03	1.00E+02	NP-95	1.08E-06	1.04E-02	3.07E+03	Not applicable	Not applicable	4.39E-04
Sb-125	9.90E-07	1.55E-03	1.00E+02	Ra-226	9.90E-07	9.53E-03	2.80E+03	Not applicable	Not applicable	4.01E-04
Cm-242	7.58E-07	1.25E-03	1.00E+02	U-233	7.58E-07	7.30E-03	2.14E+03	Not applicable	7.82E-05	3.07E-04
Ag-110m	6.84E-07	1.10E-03	1.00E+02	Cm-243	6.84E-07	6.58E-03	1.93E+03	Not applicable	Not applicable	2.77E-04
Zr-95	5.78E-07	1.06E-03	1.00Ë+02	Ag-110m	5.78E-07	5.56E-03	1.63E+03	Not applicable	Not applicable	2.34E-04
Np-95	5.72E-07	8.29E-04	1.00E+02	Co-58	5.72E-07	5.50E-03	1.62E+03	Not applicable	Not applicable	2.32E-04
Cs-134	5.15E-07	7.87E-04	1.00E+02	Cs-134	5.15E-07	4.96E-03	1.46E+03	Not applicable	Not applicable	2.09E-04
Eu-155	5.05E-07	5.58E-04	1.00E+02	Zu-65	5.05E-07	4.86E-03	1.43E+03	Not applicable	Not applicable	2.05E-04
Co-58	3.23E-07	4.37E-04	1.00E+02	Ag-108m	3.23E-07	3.11E-03	9.12E+02	Not applicable	Not applicable	1.31E-04
Ag-108m	2.03E-07	4.11E-04	1.00E+02	Mn-54	2.03E-07	1.96E-03	5.75E+02	Not applicable	Not applicable	8.24E-05
Zn-65	2.48E-08	1.93E-04	1.00E+02	U-235	2.48E-08	2.38E-04	7.00E+01	Not applicable	1.13E-02	1.00E-05
Mn-54	2.39E-08	1.55E-04	1.00E+02	ŀ129	2.39E-08	2.30E-04	6.75E+01	Not applicable	Not applicable	9.68E-06
Th-234	2.31E-08	8.84E-05	1.00E+02	U-238	2.31E-08	2.23E-04	6.54E+01	Not applicable	Not applicable	9.37E-06
Pa-233	2.31E-08	8.54E-06	1.00E+02	Th-234	2.31E-08	2.23E-04	6.54E+01	Not applicable	Not applicable	9.37E-06
U-235	1.63E-08	0.00E+00	1.00E+02	Cm-242	1.63E-08	1.57E-04	4.61E+01	Not applicable	Not applicable	6.60E-06
1-129	1.01E-08	0.00E+00	1.00E+02	Np-237	1.01E-08	9.69E-05	2.84E+01	Not applicable	Not applicable	4.08E-06
U-238	1.01E-08	0.00E+00	1.00E+02	Pa-233	1.01E-08	9.69E-05	2.84E+01	Not applicable	Not applicable	4.08E-06

If #DIV/0! occurs in the Fraction of Waste Profile Column or the Does Nuclide Meet Waste Profile? Column of Section III, the nuclide is not included on the current profile and needs to be added. Waste Classification Determination for near surface disposal per 10 CFR \$61.55

Assume that Sr-90, Cs-137, and Ni-63 are major nuclides driving waste classification determination for Tank V-1, V-2, and V-3 wastes Table 2 limit (Ci/m³)

Radionuc	:1ic	CoJ	umn 1	Column	7	Radionuclic Column 1 Column 2 .25" V-3 Sludge in a 6" pipe	Sludge	in	ิเป	<u>.</u>	pipe
Sr-90		٥	0.04	150		2.98E+00					
Cs-137			-	44		9.38E-03					
Ni-63			3.5	7.0		5.92E-04					
Class A Sum of Fractions	Sum	o£	Fract	ions:		74.39					
Class B Sum of Fractions:	Sum	of	Fract	ions:		0.02					

Class B

1:55 PM

Container ID #.25" V-3 Tank Sludge in one foot of 6-inch pipe	n one foot of 6	-inch pipe				Constants	Units
Note: based upon BTP Radioactive Waste Classification (May 1983	Naste Classifi c	cation (May 1	983, Rev.0), tl	ne final waste form v	3, Rev.0), the final waste form volume may be used for 10 CFR 61.55 Classification	3.70E+10	Bq/Ci
Section I. Waste Stream Information						453.6	g/lb
Container Typ N/A		>	olume of .25" a	Volume of .25" sludge in one foot of 6" pipe is 0.15 gal.	pipe is 0.15 gal.	1.00E-12	1.00E-12
Description: 0.15 gallons of Sludge						1000.00	g/kg
Note: assume solid phase volume of 0.12 gallons with density of 1.25 g/cc	ns with density of	1.25 g/cc				1.00E+09	ICI/Ci
Container Container Container Waste	er Container	Waste Est.		Waste Vol. Final Waste Vol.			
Gross Wt (lb) Gross Wt (kg) Tare Wt (lb) Tare Wt (kg)Net Wt (kg,	lb) Tare Wt (kg	Net Wt (kg)	(m3)	(m3)	Dose survey from Sxxxxx on xx/xx/00 shows < mrem/hr OC.		
9.52 4.32 8.27	3.75	0.57	5.68E-04	5.55E-03	Radioactive liquid effluents from hot cells, labs, and decon facilities at TAN and IETF.	facilities at TAI	V and IETF.
					EPA regulated hazardous COCs; Barium, Cadmium, Chromium, Lead, Mercury, Silver, VOCs, S'	Lead, Mercury	Silver, VOCs, S'

.25" sludge per 6" pipe

checks
pe A Packaging
LTD QTY, and Ty
DOT RAM, RQ,
ctivities; perforr
ionuclides and a
ion II. List the rad
Sect

)Cs, S'	gram	£	-07	90	ξ	505	ð Ž	¹ 04	ģ	4 0	7 04	104	Ž	ည္	ဝှ	ည်	Г О3	දි	ද්රි	ဝို	ဗို	ည္	වි	ညှ	ညှ	-63	<u>ب</u>	-D2	Ģ	Ş	Ď	Ģ	٠ <u>0</u>	Ć.	Ď.	-07
Silver, VC	Activity/gram	(bci/g)	2.21E+07	7.76E+06	9.75E+05	1.91E+05	6.96E+04	3.21E+04	1.87E+04	1.66E+04	1.38E+04	1.36E+04	1.36E+04	7.31E+03	7.04E+03	5.48E+03	4.39E+03	3.76E+03	3.26E+03	2.98E+03	2.28E+03	2.06E+03	1.74E+03	1.72E+03	1.55E+03	1.52E+03	9.70E+02	6.12E+02	7.44E+01	7.18E+01	6.96E+01	6.96E+0	4.90E+0	3.03E+01	3.03E+01	3.12E+07
-ead, Mercury,	LSA-II	Solids Frac	8.17E-02	5.74E-03	1.20E-05	1.77E-04	2.58E-03	2.37E-05	7.68E-06	6.84E-06	2.55E-05	2.52E-02	2.51E-05	1.35E-02	1.30E-02	2.25E-06	8.13E-07	1.55E-06	1.21E-06	5.51E-05	8.44E-04	2.53E-03	1.61E-06	6.36E-07	1.15E-06	2.81E-07	5.98E-07	2.26E-07	0.00E+00	0.00E+00	0.00E+00	1.29E-07	1.81E-06	5.60E-05	1.24E-08	1.46E-01
m, Chromium, I	TRU Conc.	(nCi/g)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.36E+01	0.00E+00	7.31E+00	7.04E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.06E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.03E-02	0.00E+00	3.01E+01
Barium, Cadmiu	JOT Fissile Mass	(ð)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.95E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.54E-07	0.00E+00	0.00E+00	6.44E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.33E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.92E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.94E-02
azardous COCs:	Type A Pkg?	(amount/A2)	4.63E-03	3.26E-04	6.82E-07	1.00E-05	1.46E-04	1.35E-06	4.36E-07	3.88E-07	1.45E-06	1.43E-03	1.43E-06	7.67E-04	7.38E-04	1.28E-07	4.61E-08	8.77E-08	6.84E-08	3.12E-06	4.78E-05	1.44E-04	9.11E-08	3.61E-08	6.50E-08	1.59E-08	3,39E-08	1,28E-08	0.00E+00	0.00E+00	0.00E+00	7.30E-09	1.03E-07	3.17E-06	7.05E-10	8.25E-03
EPA regulated hazardous COCs: Barium, Cadmium, Chromium, Lead, Mercury, Silver, VOCs, S' <u>id checks</u>	LTD QTY Det.	amount/(10-3)A2	4.63E+00	3.26E-01	6.82E-04	1.00E-02	1.46E-01	1.35E-03	4.36E-04	3.88E-04	1.45E-03	1.43E+00	1,43E-03	7.67E-01	7.38E-01	1.28E-04	4.61E-05	8.77E-05	6.84E-05	3.12E-03	4.78E-02	1.44E-01	9.11E-05	3.61E-05	6.50E-05	1.59E-05	3.39E-05	1.28E-05	0.00E+00	0.00E+00	0.00E+00	7.30E-06	1.03E-04	3.17E-03	7.05E-07	8.25E+00
A Packagin	A2 Value	(TBq)	1.00E-01	5.00E-01	3.00E+01	4.00E-01	1.00E-02	5.00E-01	9.00E-01	9.00E-01	2.00E-01	2.00E-04	2.00E-01	2.00E-04	2.00E-04	9.00E-01	2.00E+00	9.00E-01	1.00E+00	2.00E-02	1.00E-03	3.00E-04	4.00E-01	1.00E+00	5.00E-01	2.00E+00	6.00E-01	1.00E+00	Unlimited	Unlimited	Unlimited	2.00E-01	1.00E-02	2.00E-04	9.00E-01	
EPA regul	RQ Ratios	(amount/limit)	1,25E-01	4.40E-03	5.53E-06	1.08E-05	3.95E-05	1.82E-06	1.06E-06	9.44E-07	7.81E-06	7.73E-04	7.71E-06	4.15E-04	3.99E-04	3.11E-07	2.49E-07	2.13E-07	1.85E-07	1.69E-05	1.29E-05	1.17E-04	9.85E-08	9.75E-08	8.78E-07	8.61E-08	5.50E-08	3.47E-08	4.22E-07	4.07E-05	3.95E-07	3.95E-10	2.78E-08	1.72E-06	1.72E-10	1.31E-01
	RQ limits	(TBq)	3.70E-03	3.70E-02	3.70E+00	3.70E-01	3.70E-02	3.70E-01	3.70E-01	3.70E-01	3.70E-02	3.70E-04	3.70E-02	3.70E-04	3.70E-04	3.70E-01	3.70E-01	3.70E-01	3.70E-01	3.70E-03	3.70E-03	3.70E-04	3.70E-01	3.70E-01	3.70E-02	3.70E-01		3.70E-01	3.70E-03	3.70E-05	3.70E-03	3.70E+00	3.70E-02	3.70E-04	3.70E+00	
form DOT F	Activity/gran	(Bq/gram)	8.17E+05	2.87E+05	3.61E+04	7.08E+03	2.58E+03	1.19E+03	6.91E+02	6.16E+02	5.10E+02	5.04E+02	5.03E+02	2.71E+02	2.60E+02	2.03E+02	1.63E+02	1.39E+02	1.21E+02	1.10E+02	8.44E+01	7.60E+01	6.43E+01	6.36E+01	5.73E+01	5.62E+01	3.59E+01	2.26E+01	2.75E+00	2.66E+00	2.57E+00	2.57E+00	1.81E+00	1.12E+00	1.12E+00	1.16E+06
tivities; per	Activity	(Bd)	4.63E+08	1,63E+08	2.04E+07	4.01E+06	1.46E+06	6.73E+05	3.92E+05	3.49E+05	2.89E+05	2.86E+05	2.85E+05	1.53E+05	1.48E+05	1.15E+05	9.22E+04	7.89E+04	6.84E+04	6.25E+04	4.78E+04	4.31E+04	3.64E+04	3.61E+04	3.25E+04	3.18E+04	2.04E+04	1.28E+04	1.56E+03	1.51E+03	1.46E+03	1.46E+03	1.03E+03	6.35E+02	6.35E+02	6.55E+08
clides and ac	% of Total	A2 Fraction	5.61E+01	3.95E+00	8.26E-03	1.22E-01	1.77E+00	1.63E-02	5.28E-03	4.70E-03	1.75E-02	1.73E+01	1.73E-02	9,29E+00	8.95E+00	1.55E-03	5.58E-04	1.06E-03	8.29E-04	3.78E-02	5.79E-01	1.74E+00	1,10E-03	4.37E-04	7,87E-04	1.93E-04	4.11E-04	1.55E-04	0.00E+00	0.00E+00	0.00E+00	8.84E-05	1.25E-03	3.84E-02	8.54E-06	100.00%
ection II. List the radionuclides and activities; perform DOT RAM,	Activity	(Ö	1.25E-02	4.40E-03	5.53E-04	1.08E-04	3.95E-05	1.82E-05	1.06E-05	9.44E-06	7.81E-06	7.73E-06	7.71E-06	4.15E-06	3.99E-06	3.11E-06	2.49E-06	2.13E-06	1.85E-06	1.69E-06	1.29E-06	1.17E-06	9.85E-07	9.75E-07	8.78E-07	8.61E-07	5.50E-07	3.47E-07	4.22E-08	4.07E-08	3.95E-08	3.95E-08	2.78E-08	1.72E-08	1.72E-08	1.77E-02
ection II. Lis	Nuclide		Sr-90	Cs-137	Ni-63	Co-60	Pu-241	Eu-154	Eu-152	Ru-103	Ce-144	Pu-238	Ru-106	Am-241	Pu-239	Sb-125	Eu-155	Zr-95	Nb-95	Ra-226	U-233	Cm-243	Ag-110m	Co-58	Cs-134	Zn-65	Ag-108m	Mn-54	U-235	1-129	U-238	Th-234	Cm-242	Np-237	Pa-233	Total

DOT regulated as Hazard Class 7 Radioactive Material NOT an RQ amount of a Hazardous Substance

< Type A quantity/package per 49 CFR 173.431(a); check if excepted quantity -> excepted packaging Does NOT meet LTD QTY Exception; Check if LSA

Performed by:

Meets Low Specific Activity (LSA)-II material - Check <Type A quantity and use Radioactive material, LSA, n.o.s. as PSN Meets criteria for Fissile Excepted Package per 49 CFR 173.453

Date	
wed by:	
Revie.	
_	
is is a Low-level waste	
Ē	

	Activity Conc.	(Ci/m³)	2.26E+00	7.93E-01	9.96E-02	1.95E-02	7.11E-03	3.28E-03	1.91E-03	1.70E-03	1.41E-03	1.39E-03	1.39E-03	7.47E-04	7.19E-04	5.60E-04	4.49E-04	3.84E-04	3.33E-04	3.04E-04	2.33E-04	2.10E-04	1.77E-04	1.76E-04	1.58E-04	1.55E-04	9.91E-05	6.25E-05	7.61E-06	7.34E-06	7.11E-06	7.11E-06	5.01E-06	3.09E-06	3.09E-06
	SNM	(b)	Not applicable	Not applicable	Not applicable	Not applicable	3.95E-07	Not applicable	Not applicable	Not applicable	Not applicable	4.54E-07	Not applicable	Not applicable	6.44E-05	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	1.33E-04	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	1.92E-02	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
are WAC	Source Material	(kg)	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
les per Enviroc	Activity Conc.	(bCi/g)	2.21E+07	7.76E+06	9.75E+05	1.91E+05	6.96E+04	3.21E+04	1.87E+04	1.66E+04	1.38E+04	1.36E+04	1.36E+04	7.31E+03	7.04E+03	5.48E+03	4.39E+03	3.76E+03	3.26E+03	2.98E+03	2.28E+03	2.06E+03	1.74E+03	1.72E+03	1.55E+03	1.52E+03	9.70E+02	6.12E+02	7.44E+01	7.18E+01	6.96E+01	6.96E+01	4.90E+01	3.03E+01	3.03E+01
e radionuclic	% of Total	Activity	7.07E+01	2.48E+01	3.12E+00	6.12E-01	2.23E-01	1.03E-01	5.98E-02	5.33E-02	4.41E-02	4.36E-02	4.35E-02	2.34E-02	2.25E-02	1.75E-02	1.41E-02	1.20E-02	1.04E-02	9.53E-03	7.30E-03	6.58E-03	5.56E-03	5.50E-03	4.96E-03	4.86E-03	3.11E-03	1.96E-03	2.38E-04	2.30E-04	2.23E-04	2.23E-04	1.57E-04	9.69E-05	9.69E-05
eck reportable	Activity	(C)	1.25E-02	4.40E-03	5.53E-04	1.08E-04	3.95E-05	1.82E-05	1.06E-05	9.44E-06	7.81E-06	7.73E-06	7.71E-06	4.15E-06	3.99E-06	3.11E-06	2.49E-06	2.13E-06	1.85E-06	1.69E-06	1.29E-06	1.17E-06	9.85E-07	9.75E-07	8.78E-07	8.61E-07	5.50E-07	3.47E-07	4.22E-08	4.07E-08	3.95E-08	3.95E-08	2.78E-08	1.72E-08	1.72E-08
ipping papers; Cl	Nuclide		Sr-90	Cs-137	Ni-63	Co-60	Pu-241	Eu-154	Eu-152	Ru-103	Ce-144	Pu-238	Ru-106	Am-241	Pu-239	Sb-125	Eu-155	Zr-95	Np-95	Ra-226	U-233	Cm-243	Ag-110m	Co-58	Cs-134	Zn-65	Ag-108m	Mn-54	U-235	1-129	U-238	Th-234	Cm-242	Np-237	Pa-233
Section III: Check radionuclides for listing on labels and shipping papers; Check reportable radionuclides per Envirocare WAC	Cumulative	A2 Fraction A2 Fraction	5.61E+01	7.34E+01	8.27E+01	9.17E+01	9.56E+01	9.74E+01	9.91E+01	9.97E+01	9.98E+01	9.99E+01	9.99E+01	9.99E+01	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02
lides for list	% of Total Cumulat	A2 Fraction	5.61E+01	1.73E+01	9.29E+00	8.95E+00	3.95E+00	1.77E+00	1.74E+00	5.79E-01	1.22E-01	3.84E-02	3.78E-02	1,75E-02	1.73E-02	1.63E-02	8.26E-03	5.28E-03	4.70E-03	1.55E-03	1.25E-03	1.10E-03	1.06E-03	8.29E-04	7.87E-04	5.58E-04	4.37E-04	4.11E-04	1.93E-04	1.55E-04	8.84E-05	8.54E-06	0.00E+00	0.00E+00	0.00E+00
eck radionuc	Activity	(Ci)	1.25E-02	4.40E-03	5.53E-04	1.08E-04	3.95E-05	1.82E-05	1.06E-05	9.44E-06	7.81E-06	7.73E-06	7.71E-06	4.15E-06	3.99E-06	3.11E-06	2.49E-06	2.13E-06	1.85E-06	1.69E-06	1.29E-06	1.17E-06	9.85E-07	9.75E-07	8.78E-07	8.61E-07	5.50E-07	3.47E-07	4.22E-08	4.07E-08	3.95E-08	3.95E-08	2.78E-08	1.72E-08	1.72E-08
Section III: Ch	Nuclide		Sr-90	Pu-238	Am-241	Pu-239	Cs-137	Pu-241	Cm-243	0-233	Co-60	Np-237	Ra-226	Ce-144	Ru-106	Eu-154	Ni-63	Eu-152	Ru-103	Sb-125	Cm-242	Ag-110m	Zr-95	Np-95	Cs-134	Eu-155	Co-58	Ag-108m	Zn-65	Mn-54	Th-234	Pa-233	U-235	1-129	U-238

If #DIV/0! occurs in the Fraction of Waste Profile Column or the Does Nuclide Meet Waste Profile? Column of Section III, the nuclide is not included on the current profile and needs to be added. Waste Classification Determination for near surface disposal per 10 CFR \$61.55

Assume that Sr-90, Cs-137, and Ni-63 are major nuclides driving waste classification determination for Tank V-1, V-2, and V-3 wastes Table 2 limit (Ci/m³)

udge in a 6" pipe	
.25" V-3 Sludge	2.26E+00
Column 2	150
Column 1	0.04
Radionuclic	Sr-90

2.26E+00	7.11E-03	4.49E-04	56.41	0.02
150	44	20		••
0.04		3.5	Fractions	Fractions
0			of	οĘ
			Sum	Sum
	7		ø	М
Sr-90	Cs-137	Ni-63	Class	Class

Class B

14 0/27

2:00 PM

¥ 1 of 2

									-	
Conf.	.) # .0625" V-3 Tank Sludge in one foot of 6-inch pipe	ank Sludge in	one foot of	f 6-inch pipe	4-			Constants	Sh	
Note: ba	sed upon BTP Ra	dioactive Was	ste Classific	ation (May	1983, Rev.0), the	final waste form v	Note: based upon BTP Radioactive Waste Classification (May 1983, Rev.0), the final waste form volume may be used for 10 CFR 61.55 Classification	3.70E+10	Bq/Ci	
Section	Section I. Waste Stream Information	Mormation		i	i			453.6	g/b	
Containe	Container Typ-N/A			_	/olume of .0625";	sludge in one foot o	/olume of .0625" sludge in one foot of 6" pipe is 0.038 gal.	1.00E-12	1.00E-12 「Bq/Bq or Ci/pC	
Descriptin	Description: 0.038 gallons of Sludge	s of Sludge						1000.00	g/kg	
Note: assu	Note: assume solid phase volume of 0038 gallons with density of 1.25 g/cc	s of 0038 gallons	s with density o	of 1.25 g/cc				1.00E+09	nCi/Ci	
Contai	Container Container Container Container Waste Est. Waste Vol. Final Waste Vol.	Container	Container	Waste	Est. Waste Vol. F	inal Waste Vol.				
Gross W	Gross Wt (ib) Gross Wt (kg) Tare Wt (ib) Tare Wt (kg)Net Wt (kg,) Tare Wt (Ib)	Tare Wt (kg)	Net Wt (kg)	(m3)	(m3)	Dose survey from Sxxxxx on xx/xx/00 shows < _ mrem/hr OC.			
9.52	4.32	8.27	3.75	0.14	5.68E-04	5.55E-03	Radioactive liquid effluents from hot cells, labs, and decon facilities at TAN and IETF.	ilities at TAI	A and IETF.	
									2	

	in																						٠								-							
and IETF.	Silver, VOCs, 8		Activity/gram	(bCi/g)	2.21E+07	7.76E+06	9.75E+05	1.91E+05	6.96E+04	3.21E+04	1.87E+04	1.66E+04	1.38E+04	1.36E+04	1.36E+04	7.31E+03	7.04E+03	5.48E+03	4.39E+03	3.76E+03	3.26E+03	2.98E+03	2.28E+03	2.06E+03	1.74E+03	1.72E+03	1.55E+03	1.52E+03	9.70E+02	6.12E+02	7.44E+01	7.18E+01	6.96E+01	6.96E+01	4.90E+01	3.03E+01	3.03E+01	3.12E+07
ilities at TAN	ad, Mercury, '		LSA-II	Solids Frac	8.17E-02	5.74E-03	1.20E-05	1.77E-04	2.58E-03	2.37E-05	7.68E-06	6.84E-06	2.55E-05	2.52E-02	2.51E-05	1.35E-02	1.30E-02	2.25E-06	8.13E-07	1.55E-06	1.21E-06	5.51E-05	8.44E-04	2.53E-03	1.61E-06	6.36E-07	1.15E-06	2.81E-07	5.98E-07	2.26E-07	0.00E+00	0.00E+00	0.00E+00	1.29E-07	1.81E-06	5.60E-05	1.24E-08	1.46E-01
mrem/hr OC.	, Chromium, Le		TRU Conc.	(nCi/g)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.36E+01	0.00E+00	7.31E+00	7.04E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.06E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.03E-02	0.00E+00	3.01E+01
ق∟	EPA regulated hazardous COCs: Barium, Cadmium, Chromium, Lead, Mercury, Silver, VOCs, S'		OOT Fissile Mas	(6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.87E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.14E-07	0.00E+00	0.00E+00	1.61E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.33E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.80E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.85E-03
Sxxxx on xx/x	zardous COCs:		Type A Pkg?	(amount/A2)	1.16E-03	8.14E-05	1.70E-07	2.51E-06	3.65E-05	3.37E-07	1.09E-07	9.70E-08	3.61E-07	3.57E-04	3.56E-07	1.92E-04	1.85E-04	3.19E-08	1.15E-08	2.19E-08	1.71E-08	7.81E-07	1.20E-05	3.59E-05	2.28E-08	9.02E-09	1.62E-08	3.98E-09	8.48E-09	3.21E-09	0.00E+00	0.00E+00	0.00E+00	1.82E-09	2.57E-08	7.93E-07	1,76E-10	2.06E-03
Dose survey from Sxxxxx on xx/xx/00 shows < Radioactive liquid effluents from hot cells, la	PA regulated ha	checks	LTD QTY Det.	amount/(10-3)A2	1.16E+00	8.14E-02	1.70E-04	2.51E-03	3.65E-02	3.37E-04	1.09E-04	9.70E-05	3.61E-04	3.57E-01	3.56E-04	1,92E-01	1.85E-01	3.19E-05	1.15E-05	2.19E-05	1.71E-05	7.81E-04	1.20E-02	3.59E-02	2.28E-05	9.02E-06	1.62E-05	3.98E-06	8.48E-06	3.21E-06	0.00E+00	0.00E+00	0.00E+00	1.82E-06	2.57E-05	7.93E-04	1.76E-07	2.06E+00
_ _	. 113	A Packagino	A2 Value	(TBq) a	1.00E-01	5.00E-01	3.00E+01	4.00E-01	1.00E-02	5.00E-01	9.00E-01	9.00E-01	2.00E-01	2.00E-04	2.00E-01	2.00E-04	2.00E-04	9.00E-01	2.00E+00	9.00E-01	1.00E+00	2.00E-02	1.00E-03	3.00E-04	4.00E-01	1.00E+00	5.00E-01	2.00E+00	6.00E-01	1.00E+00	Unlimited	Unlimited	Unlimited	2.00E-01	1.00E-02	2.00E-04	9.00E-01	
(m3) 5.55E-03		Section II. List the radionuclides and activities; perform DOT RAM, RQ, LTD QTY, and Type A Packaging checks	RO Ratios	(amount/limit)	3.13E-02	1.10E-03	1.38E-06	2.71E-06	9.87E-06	4.55E-07	2.65E-07	2.36E-07	1.95E-06	1.93E-04	1.93E-06	1.04E-04	9.98E-05	7.76E-08	6.23E-08	5.33E-08	4.62E-08	4.22E-06	3.23E-06	2.91E-05	2.46E-08	2.44E-08	2.19E-07	2.15E-08	1.38E-08	8.67E-09	1.06E-07	1.02E-05	9.86E-08	9.86E-11	6.95≝-09	4.29E-07	4.29E-11	3.29E-02
(m3) 5 68F-04		AM, RO, L'TD	RQ limits	(TBq)	3.70E-03	3.70E-02	3.70E+00	3.70E-01	3.70E-02	3.70E-01	3.70E-01	3.70E-01	3.70E-02	3.70E-04	3.70E-02	3.70E-04	3.70E-04	3.70E-01	3.70E-01	3.70E-01	3.70E-01	3.70E-03	3.70E-03	3.70E-04	3.70E-01	3.70E-01	3.70E-02	3.70E-01	3.70E-01	3.70E-01	3.70E-03	3.70E-05	3.70E-03	3.70E+00	3.70E-02	3.70E-04	3.70E+00	
Net Wt (kg) 0.14	<u>.</u>	form DOT R	\ctivity/gran	(Bq/gram)	8.17E+05	2.87E+05	3.61E+04	7.08E+03	2.58E+03	1.19E+03	6.91E+02	6.16E+02	5.10E+02	5.04E+02	5.03E+02	2.71E+02	2.60E+02	2.03E+02	1.63E+02	1.39E+02	1.21E+02	1.10E+02	8.44E+01	7.60E+01	6.43E+01	6.36E+01	5.73E+01	5.62E+01	3.59E+01	2.26E+01	2.75E+00	2.66E+00	2.57E+00	2.57E+00	1.81E+00	1.12E+00	1.12E+00	1.16E+06
Fare Wt (kg)	i	tivitles; per	Activity	(Bd)	1,16E+08	4.07E+07	5.11E+06	1.00E+06	3.65E+05	1.68E+05	9.80E+04	8.73E+04	7.23E+04	7.15E+04	7.13E+04	3.84E+04	3.69E+04	2.87E+04	2.30E+04	1.97E+04	1.71E+04	1.56E+04	1.20E+04	1.08E+04	9.11E+03	9.02E+03	8.12E+03	7.96E+03	5.09E+03	3.21E+03	3.90E+02	3.77E+02	3.65E+02	3.65E+02	2.57E+02	1.59E+02	1.59€+02	1.64E+08
Tare Wt (Ib)	i	lides and ac	% of Total	A2 Fraction	5.61E+01	3.95E+00	8.26E-03	1.22E-01	1.77E+00	1.63E-02	5.28E-03	4.70E-03	1.75E-02	1.73E+01	1.73E-02	9.29E+00	8.95E+00	1.55E-03	5.58E-04	1.06E-03	8.29E-04	3.78E-02	5.79E-01	1.74E+00	1.10E-03	4.37E-04	7.87E-04	1.93E-04	4.11E-04	1.55E-04	0.00E+00	0.00E+00	0.00E+00	8.84E-05	1.25E-03	3.84E-02	8.54E-06	100.00%
Gross Wt (kg)	1	the radionuc	Activity	(0)	3.13E-03	1.10E-03	1.38E-04	2.71E-05	9.87E-06	4.55E-06	2.65E-06	2.36E-06	1.95E-06	1.93E-06	1.93E-06	1.04E-06	9.98E-07	7.76E-07	6.23E-07	5.33E-07	4.62E-07	4.22E-07	3.23E-07	2.91E-07	2.46E-07	2.44E-07	2.19E-07	2.15E-07	1.38E-07	8.67E-08	1.06E-08	1.02E-08	9.86E-09	9.86E-09	6.95E-09	4.29E-09	4.29E-09	4.43E-03
Gross Wt (lb) Gross Wt (kg) Tare Wt (lb) Tare Wt (kg)Net Wt (kg)	47.0	Section II. List	Nuclide		S ₇ -90	Cs-137	Ni-63	Co-60	Pu-241	Eu-154	Eu-152	Ru-103	Ce-144	Pu-238	Ru-106	Am-241	Pu-239	Sb-125	Eu-155	Zr-95	96-qN	Ra-226	U-233	Cm-243	Ag-110m	Co-58	Cs-134	Zn-65	Ag-108m	Mn-54	U-235	1-129	U-238	Th-234	Cm-242	No-237	Pa-233	Total

DOT regulated as Hazard Class 7 Radioactive Material NOT an RQ amount of a Hazardous Substance

< Type A quantity/package per 49 CFR 173.431(a); check if excepted quantity -> excepted packaging Does NOT meet LTD QTY Exception; Check if LSA

Performed by:_

INEEL V-3 Tank Separate Sludge Heel Tank Calc Sept 26 .xis

Page 2 of 2

Meets Low Specific Activity (LSA)-Il material - Check <Type A quantity and use Radioactive material, LSA, n.o.s. as PSN Meets criteria for Fissile Excepted Package per 49 CFR 173.453

ı																																				-
Date:		Activity Conc.	(Ci/m³)	5.64E-01	1.98E-01	2.49E-02	4.89E-03	1.78E-03	8.20E-04	4.77E-04	4.25E-04	3.52E-04	3.48E-04	3.47E-04	1.87E-04	1.80E-04	1.40E-04	1.12E-04	9.61E-05	8.33E-05	7.60E-05	5.82E-05	5.25E-05	4.44E-05	4.39E-05	3.95E-05	3.88E-05	2.48E-U5	1.56E-05	1.90E-06	1.83E-06	1.78E-06	1.78E-06	1.25E-06	7.73E-07	7.73E-07
		SNM	(B)	Not applicable	Not applicable	Not applicable	Not applicable	9.87E-08	Not applicable	Not applicable	Not applicable	Not applicable	1.14E-07	Not applicable	Not applicable	1.61E-05	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	3.33E-05	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	4.80E-03	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
	are WAC	Source Material	(kg)	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
· ·	es per Enviroc	Activity Conc.	(pCi/g)	2.21E+07	7.76E+06	9.75E+05	1.91E+05	6.96E+04	3.21E+04	1.87E+04	1.66E+04	1.38E+04	1,36E+04	1.36E+04	7.31E+03	7.04E+03	5.48E+03	4.39E+03	3.76E+03	3.26E+03	2.98E+03	2.28E+03	2.06E+03	1.74E+03	1.72E+03	1.55E+03	1.52E+03	9.70E+02	6.12E+02	7.44E+01	7.18E+01	6.96E+01	6.96E+01	4.90E+01	3.03E+01	3.03E+01
Reviewed by:	radionuclid	% of Total	Activity	7.07E+01	2.48E+01	3.12E+00	6.12E-01	2.23E-01	1.03E-01	5.98E-02	5.33E-02	4.41E-02	4.36E-02	4.35E-02	2.34E-02	2.25E-02	1.75E-02	1.41E-02	1.20E-02	1.04E-02	9.53E-03	7.30E-03	6.58E-03	5.56E-03	5.50E-03	4.96E-03	4.86E-03	3.11E-03	1.96E-03	2.38E-04	2.30E-04	2.23E-04	2.23E-04	1.57E-04	9.69E-05	9.69E-05
	eck reportable	Activity	(Ci)	3.13E-03	1.10E-03	1.38E-04	2.71E-05	9.87E-06	4.55E-06	2.65E-06	2.36E-06	1.95E-06	1.93E-06	1.93E-06	1.04E-06	9.98E-07	7.76E-07	6.23E-07	5.33E-07	4.62E-07	4.22E-07	3.23E-07	2.91E-07	2.46E-07	2.44E-07	2.19E-07	2.15E-07	1.38E-07	8.67E-08	1.06E-08	1.02E-08	9.86E-09	9.86E-09	6.95E-09	4.29E-09	4.29E-09
,	Section III: Check radionuclides for listing on labels and shipping papers; Check reportable radionuclides per Envirocare WAC	Nuclide		Sr-90	Cs-137	Ni-63	Co-60	Pu-241	Eu-154	Eu-152	Ru-103	Ce-144	Pu-238	Ru-106	Am-241	Pu-239	Sb-125	Eu-155	Zr-95	S6-9N	Ra-226	U-233	Cm-243	Ag-110m	Co-58	Cs-134	Zu-65	Ag-108m	Mn-54	0-235	(-129	U-238	Th-234	Cm-242	Np-237	Pa-233
	and ship																																			
•	ng on labels	Cumulative	A2 Fraction	5,61E+01	7.34E+01	8.27E+01	9.17E+01	9.56E+01	9.74E+01	9.91E+01	9.97E+01	9.98E+01	9.99E+01	9.99E+01	9.99E+01	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02
septen rack	ides for listi	% of Total	A2 Fraction A2 Fracti	5.61E+01	1.73E+01	9.29E+00	8.95E+00	3.95E+00	1.77E+00	1.74E+00	5.79E-01	1.22E-01	3.84E-02	3.78E-02	1.75E-02	1.73E-02	1.63E-02	8.26E-03	5.28E-03	4.70E-03	1.55E-03	1.25E-03	1.10E-03	1.06E-03	8.29E-04	7.87E-04	5.58E-04	4.37E-04	4.11E-04	1.93E-04	1.55E-04	8.84E-05	8.54E-06	0.00E+00	0.00E+00	0.00E+00
TOT FISSING CAN	eck radionuci	Activity	<u>(</u> 2	3.13E-03	1.10E-03	1.38E-04	2.71E-05	9.87E-06	4.55E-06	2.65E-06	2.36E-06	1.95E-06	1.93E-06	1.93E-06	1.04E-06	9.98E-07	7.76F-07	6.23E-07	5,33E-07	4.62E-07	4.22E-07	3.23E-07	2.91E-07	2.46E-07	2.44E-07	2.19E-07	2.15E-07	1.38E-07	8.67E-08	1.06E-08	1.02E-08	9.86E-09	9,86E-09	6.95E-09	4.29E-09	4.29E-09
Meets offeria for rissile excepted rackage per This is a Low-layel waste	Section III: Ch	Nuclide		0678	Pu-238	Am-241	Pu-239	Cs-137	Pu-241	Cm-243	U-233	Co-60	No-237	Ra-226	Ce-144	Ru-106	F11-154	N-63-	Fu-152	Bu-103	Sh-125	Cm-242	An-110m	7r-95	26-4N	Cs-134	Eu-155	Co-58	Aq-108m	Zn-65	Mn-54	Th-234	Pa-233	11-235	1-129	U-238

If #DIV/0! occurs in the Fraction of Waste Profile Column or the Does Nuclide Meet Waste Profile? Column of Section III, the nuclide is not included on the current profile and needs to be added. Waste Classification Determination for near surface disposal per 10 CFR \$61.55

Assume that Sr-90, Cs-137, and Ni-63 are major nuclides driving waste classification determination for Tank V-1, V-2, and V-3 wastes

Radionuclic	Column 1	Column 2	Radionuclic Column 1 Column 2 .25" V-3 Sludge in a 6" pipe
Sr-90	0.04	150	5.64E-01
Cs-137	1	44	1.78E-03
Ni-63	3.5	7.0	1,12E-04
Class A Sum of Fractions:	of Fract	ions:	14.10
Class B Gum of Bractions:	Of Brach	ions:	0.00

Table 2 limit (Ci/m3)

Class B

16 of 27

Attachment 3

Tank with 17.26 gal Residue

						Mi Tank with residue <type a<="" th=""><th>ith residue</th><th><type a<="" th=""><th></th><th></th><th></th><th></th><th>Page 1 of 2</th><th></th></type></th></type>	ith residue	<type a<="" th=""><th></th><th></th><th></th><th></th><th>Page 1 of 2</th><th></th></type>					Page 1 of 2	
Container ID # Empty V-Tank with 17.26 gallons of sludge residue Note: based upon BTP Radioactive Waste Classification (May 1983, Re Section I. Waste Stream Information Container Typ 10,000 gallon stainless steel tank (10' dia. X 19.5' leng 1337 Description: 17.26 gallons of Sludge	Empty V-Tai pon BTP Ra te Stream In 10,000 gallon 17.26	Container ID # Empty V-Tank with 17.26 gallor Note: based upon BTP Radioactive Waste Cl. Section I. Waste Stream Information Container Typ 10,000 gallon stainless steel tank Description: 17.26 gallons of Sludge	gallons of s ste Classific I tank (10' di udge	sludge residu. cation (May 19 ia. X 19.5' leng	e 983, Rev.0), the Also assume th g 1337 ft³ or	final waste forn nat sludge will be 37.86	rm volume may be us be dispersed uniformly m³ external volume	nay be used funiformly and a	Container ID #Empty V-Tank with 17.26 gallons of sludge residue: Note: based upon BTP Radioactive Waste Classification (May 1983, Rev.0), the final waste form volume may be used for 10 CFR 61.55 Classification Section I. Waste Stream Information Also assume that sludge will be dispersed uniformly and solidified with suitable media Container Typ 10,000 gallon stainless steel tank (10' dia. X 19.5' leng 1337 ft³ or 37.86 m³ external volume Description: 17.26 gallons of Sludge	u		Constants 3.70E+10 453.6 1.00E-12	Constants Units 3.70E+10 Bq/Ci 453.6 g/lb 1.00E-12 FBq/Bq or Ci/pC	
Note: assume solid phase volume of 17.26 gallons with density of 1.25 g/cc Container Container Container Wasi	id phase volume Container	ite assume solid phase volume of 17.26 gallons with density of 1.25 g/cc. Container Container Waste	with density of Container	f 1.25 g/cc Waste	Est.	Waste Vol. Final Waste Vol.	<u>o</u>					1.00E+09	g/kg nCi/Ci	
Gross Wt (lb) 1 180.05 Note: Gross weigh	Gross Wt (kg 81.67	Gross Wt (lb) Gross Wt (kg) Tare Wt (lb) Tare Wt (kg) Net Wt (kg) 180.05 81.67 0.00 0.00 81.67	Fare Wt (kg) 0.00	Net Wt (kg) 81.67	(m3) 3.79E+01	(m3) 1.07E+00	:	Dose survey t	Dose survey from Sxxxxx on xx/xx/00 shows < mrem/hr OC. Radioactive liquid effluents from hot cells, labs, and decon facilities at TAN and IETF.	s < mre s, labs, ar	am/hr OC. nd decon fa	cilities at TAI	l and lETF.	
Section II. List the radionuclides and activities; perform DOT RAM, RQ, LTD	the radionu	clides and act	g/cc)x(3/85.4 tivities: per	form DOT RA	M, RQ, LTD QT	Section II. List the radionuclides and activities; perform DOT RAM, RQ, LTD QTY, and Type A Packaging checks	lbs. Packaging	EPA regulate checks	EPA regulated hazardous COCs: Barium, Cadmium, Chromium, Lead, Mercury, Silver, VOCs, S' shecks.	adminm, C	Chromium, L	ead, Mercury,	Silver, VOCs, S'	
Nuclide	Activity (Ci)	Activity % of Total Activity Activity/gram (Ci) A2 Fraction (Bq) (Bq/gram)	Activity (Bq)	Activity/gram (Bq/qram)	RQ limits (TBa)	RQ Ratios	A2 Value	LTD QTY De	RQ Ratios A2 Value LTD QTY Det. Type A Pkg? DOT Fissile Mass TRU Conc.	Mas TF	3U Conc.	LSA-II	Activity/gram	

	100000	מוויה מוויה	TOTAL POP	Willies, perioriti DOI nAM,		חש, ביום עון, מוום ו ype A Packaging checks	ackaging	hecks					
Nuclide	Activity	% of Total	Activity	Activity/gram	RQ limits	RQ Ratios	A2 Value	LTD OTY Det	Tyne A Pkn?	Tyne A Pkn? JOT Eissile Mass	TOLICE		:
	(Ö)	A2 Fraction	(Bd)	(Bq/gram)	(TBq)	(amount/limit)		amount/(10-3)A2	(amount/A2)	(g)	(nCi/g)	Solids Frac	Activity/gram (pCi/g)
Sr-90	1.44E+00	5.61E+01	5.33E+10	6.53E+05	3.70E-03	1.44E+01	1.00E-01	5.33F+02	5.33E.01	0000	00.000	100	(n) 1
Cs-137	5.06E-01	3.95E+00	1.87E+10	2.29E+05	3.70E-02	5.06E-01	5.00E-01	3.75F±01	3.75E-02	0.000	0.00=+00	6.53E-02	1.76E+07
Ni-63	6.36E-02	8.26E-03	2.35E+09	2.88E+04	3.70E+00	6.36E-04	3.00E+01	7.84F-02	7.84E-05	0.005+00	0.000	4.59E-03	6.20E+06
Co-60	1.25E-02	1.22E-01	4.62E+08	5.65E+03	3.70E-01	1.25E-03	4.00E-01	1.15E+00	1.15E-03	0.005+00	0.00=+00	9.60E-06	7.79E+05
Pu-241	4.54E-03	1.77E+00	1.68E+08	2.06E+03	3.70E-02	4.54E-03	1.00E-02	1.68F±01	1 68E-02	4 EAE OF	0.000	1.41E-04	1.53E+05
Eu-154	2.09E-03	1.63E-02	7.75E+07	9.49E+02	3.70E-01	2.09E-04	5.00E-01	1.55E-01	1.55E-04	4.34E-03	0.00=+00	2.06E-03	5.56E+04
Eu-152	1.22E-03	5.28E-03	4.51E+07	5.52E+02	3.70E-01	1.22E-04	9.00E-01	5.01E-02	5.01E-05	0.000	0.00E+00	1.90E-05	2.56E+04
Ru-103	1.09E-03	4.70E-03	4.02E+07	4.92E+02	3.70E-01	1.09E-04	9.00E-01	4 47F-02	4.47E-05	0.00=+00	0.00E+00	6.14E-06	1.49E+04
Ce-144	8.99E-04	1.75E-02	3.33E+07	4.07E+02	3.70E-02	8.99E-04	2.00F-01	1.47 E 02 1 66E-01	4.4/E-03	0.00=+00	0.00E+00	5.47E-06	1.33E+04
Pu-238	8.89E-04	1.73E+01	3.29E+07	4.03E+02	3.70E-04	8 89F-02	2 00E-04	1.00E 01	1.00C-04	0.005	0.005+00	2.04E-05	1.10E+04
Ru-106	8.87E-04	1.73E-02	3.28E+07	4.02E+02	3.70E-02	8.87E-04	2.00E-01	1 645 04	1.045-01	5.23E-05	1.09E+01	2.01E-02	1.09E+04
Am-241	4.77E-04	9.29E+00	1.77E+07	2.16F±02	3 70E-04	4 77E-02	2.00E 04	0.045-01	1.04E-04	0.005+00	0.00E+00	2.01E-05	1.09E+04
Pu-239	4.59E-04	8.95F+00	1 70F±07	2 UBE + U2	3 70E-04	4 FOE 00	2.00E-04	0.03E+01	8.83E-02	0.00E+00	5.84E+00	1.08E-02	5.84E+03
Sh-125	3.57E-04	1 55E-03	1 32E 107	1 505.00	9.701-04	4.39E-02	Z.00E-04	8.505+01	8.50E-02	7.41E-03	5.62E+00	1.04E-02	5.62E+03
F11-155	2 B7E.04	20 TO TO T	1.055.07	1.025+02	3.70E-01	3.5/E-U5	9.00E-01	1.47E-02	1.47E-05	0.00E+00	0.00E+00	1.80E-06	4.38E+03
7. OF	2.07E-04	5.58E-04	1.06E+U/	1.30E+02	3.70E-01	2.87E-05	2.00E+00	5.30E-03	5.30E-06	0.00E+00	0.00E+00	6.49E-07	3.51E+03
C6-17	2.45E-04	1.06E-03	9.08E+06	1.11E+02	3.70E-01	2.45E-05	9.00E-01	1.01E-02	1.01E-05	0.00E+00	0.00E+00	1 24F-06	3.00E.03
26-av	2.13E-04	8.29E-04	7.87E+06	9.64E+01	3.70E-01	2.13E-05	1.00E+00	7.87E-03	7.87E-06	0.00E+00	0.00E+00	9 64E-07	2646.00
Ha-226	1.94E-04	3.78E-02	7.19E+06	8.80E+01	3.70E-03	1.94E-03	2.00E-02	3.59E-01	3.59E-04	0.00F±00	0.000	4.40E.0F	2.010
N-233	1.49E-04	5.79E-01	5.50E+06	6.74E+01	3.70E-03	1.49E-03	1.00E-03	5.50E+00	5 50E-03	1 53E-02	0.000	4.405-03	Z.38E+03
Cm-243	1.34E-04	1.74E+00	4.96E+06	6.07E+01	3.70E-04	1.34E-02	3,00E-04	1.65F±01	1 65E-02	0.000	0.00E+00	0.74E-04	1.82E+03
Ag-110m	1.13E-04	1.10E-03	4.19E+06	5.13E+01	3.70E-01	1.13E-05	4.00F-01	1 05E-02	1.0512-02	0.00=+00	1.04E+UU	Z.02E-03	1.64E+03
Co-58	1.12E-04	4.37E-04	4.15E+06	5.08E+01	3.70E-01	1 12E-05	1 DOF 100	1.05E-02 4 15E-03	1.035-03	0.00E+00	0.00E+00	1.28E-06	1.39E+03
Cs-134	1.01E-04	7.87E-04	3.74E+06	4 58F±01	3 70E-02	1015-04	1.00E+00	4.135-03	4.15E-06	0.00E+00	0.00E+00	5.08E-07	1.37E+03
Zn-65	9.90E-05	1.93E-04	3.66F±06	4 49F±01	3.70E-01	0 0000	3.00E-01	7.47E-03	7.4/E-06	0.00E+00	0.00E+00	9.15E-07	1.24E+03
Aq-108m	6.33E-05	4.11E-04	2.34F±06	2.87E±01	3.70E-01	8.30E-00	6.00E+00	1.83E-03	1.83E-06	0.00E+00	0.00E+00	2.24E-07	1.21E+03
Mn-54	3.99E-05	1 55E-04	1 48E±06	1 815,01	3.70E-01	0.335	9.00E-01	3.90E-03	3.90E-06	0.00E+00	0.00E+00	4.78E-07	7.75E+02
U-235	4 86F-06	0.001	1 805+05	2.201.00	3.705-01	5.39E-00	1.00E+00	1.48E-03	1.48E-06	0.00E+00	0.00E+00	1.81E-07	4.89E+02
1-120	4 60E-06	00.100.0	1 727 1 07	2.20E+00	3.70E-03	4.80E-US	Unlimited	0.00E+00	0.00E+00	2.21E+00	0.00E+00	0.00E+00	5.95E+01
11.238	4.03E-00	0.00=+00	1./3E+05	2.12E+00	3.70E-05	4.69E-03	Unlimited	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.74E+01
Th. 234	4.34E-06	0.00=+00	1.08E+U3	Z.U6E+00	3.70E-03	4.54E-05	Unlimited	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.56F±01
- 1524 - 243	4.34E-00	0.04E-U3	1.58E+U5	2.06E+00	3.70E+00	4.54E-08	2.00E-01	8.40E-04	8.40E-07	0.00E+00	0.00E+00	1.03E-07	5.56F±01
CIII-242	3.20E-06	1.25E-03	1.18E+05	1.45E+00	3.70E-02	3.20E-06	1.00E-02	1.18E-02	1.18E-05	0.00E+00	0.00E+00	1.45E-06	3 92E±01
14p-23/	1.9/11-00	3.84E-02	7.30E+04	8.94E-01	3.70E-04	1.97E-04	2.00E-04	3.65E-01	3.65E-04	0.00E+00	2.42E-02	4.47F-05	2.42E±01
ra-233	1.9/E-06	8.54E-06	7.30E+04	8.94E-01	3.70E+00	1.97E-08	9.00E-01	8.12E-05	8.12E-08	0.00E+00	0.00E+00	9.94E-09	2.42F+01
Total	2.04E+00	100.00%	7.54E+10	9.23E+05		1.51E+01		9.50E+02	9.50E-01	2,23F±00	2.40E±01	1 16 01	10 10 10
DOT regulated as Hazard Class 7 Badioactive Material	as Hazard Cl	lass 7 Radios	active Materi								1011	1.10E-01	2.50E+U/

DOT regulated as Hazard Class 7 Radioactive Material

Contains a Reportable Quantity of a Hazardous Substance; use 'RQ(radionuclides)' as part of PSN < Type A quantity/package per 49 CFR 173.431(a); check if excepted quantity -> excepted packaging Does NOT meet LTD QTY Exception; Check if LSA

INEEL V-3 Tank Separate Sludge Heel Tank Calc Sept 26 .xls

pecific Activity (LSA)-II material - Check <Type A quantity and use Radioactive ma

Meets crueria for Fissile Excepted Package per 49 CFR 173.453 This is a Low-level waste

LSA, n.o.s. as PSN

Date: Z Y M Reviewed by:

Activity Conc.	(CVm³)	3.81E-02	1.34E-02	1,68E-03	3.30E-04	1.20E-04	5.53E-05	3.22E-05	2.87E-05	2.37E-05	2.35E-05	2.34E-05	1.26E-05	1.21E-05	9.44E-06	7.57E-06	6.48E-06	5.62E-06	5.13E-06	3.93E-06	3.54E-06	2.99E-06	2.96E-06	2.67E-06	2.62E-06	1.67E-06	1.05E-06	1.28E-07	1.24E-07	1.20E-07	1.20E-07	8.44E-08	5.21E-08	5.21E-08
SNM	(6)	Not applicable	Not applicable	Not applicable	Not applicable	4.54E-05	Not applicable	Not applicable	Not applicable	Not applicable	5.23E-05	Not applicable	Not applicable	7.41E-03	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	1.53E-02	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	2.21E+00	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
Source Material	(kg)	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
Activity Conc.	(bCi/g)	1.76E+07	6.20E+06	7.79E+05	1.53E+05	5.56E+04	2.56E+04	1.49E+04	1.33E+04	1.10E+04	1.09E+04	1.09E+04	5.84E+03	5.62E+03	4.38E+03	3.51E+03	3.00E+03	2.61E+03	2.38E+03	1.82E+03	1.64E+03	1.39E+03	1.37E+03	1.24E+03	1.21E+03	7.75E+02	4.89E+02	5.95E+01	5.74E+01	5.56E+01	5.56E+01	3.92E+01	2.42E+01	2,42E+01
% of Total	Activity	7.07E+01	2.48E+01	3.12E+00	6.12E-01	2.23E-01	1.03E-01	5.98E-02	5.33E-02	4.41E-02	4.36E-02	4.35E-02	2.34E-02	2.25E-02	1.75E-02	1.41E-02	1.20E-02	1.04E-02	9.53E-03	7.30E-03	6.58E-03	5.56E-03	5.50E-03	4.96E-03	4.86E-03	3.11E-03	1.96E-03	2.38E-04	2.30E-04	2.23E-04	2.23E-04	1.57E-04	9.69E-05	9.69E-05
Activity	(<u>C</u>	1.44E+00	5.06E-01	6.36E-02	1.25E-02	4.54E-03	2.09E-03	1.22E-03	1.09E-03	8.99E-04	8.89E-04	8.87E-04	4.77E-04	4.59E-04	3.57E-04	2.87E-04	2.45E-04	2.13€-04	1.94E-04	1.49E-04	1.34E-04	1.13E-04	1.12E-04	1,01E-04	9.90E-05	6.33E-05	3.99E-05	4.86E-06	4.69E-06	4.54E-06	4.54E-06	3.20E-06	1.97E-06	1.97E-06
Nuclide		Sr-90	Cs-137	Ni-63	Co-60	Pu-241	Eu-154	Eu-152	Ru-103	Ce-144	Pu-238	Ru-106	Am-241	Pu-239	Sb-125	Eu-155	Zr-95	Np-95	Ra-226	U-233	Cm-243	Ag-110m	Co-58	Cs-134	Zn-65	Ag-108m	Mn-54	U-235	1.129	U-238	Th-234	Cm-242	Np-237	Pa-233
Cumulative	A2 Fraction	5.61E+01	7.34E+01	8.27E+01	9.17E+01	9.56E+01	9.74E+01	9.91E+01	9.97E+01	9.98E+01	9.99E+01	9.99E+01	9.99E+01	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1,00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02
% of Total Cumulative	A2 Fraction A2 Fraction	5.61E+01	1.73E+01	9.29E+00	8.95E+00	3.95E+00	1.77E+00	1.74E+00	5.79E-01	1.22E-01	3.846-02	3.78E-02	1.75E-02	1.73E-02	1.63E-02	8.26E-03	5.28E-03	4.70E-03	1.55E-03	1.25E-03	1.10E-03	1.06E-03	8.29E-04	7.87E-04	5.58E-04	4.37E-04	4.11E-04	1.93E-04	1.55E-04	8.84E-05	8.54E-06	0.00E+00	0.00E+00	0.00E+00
Activity	(<u>C</u>	1,44E+00	8.89E-04	4.77E-04	4.59E-04	5.06E-01	4.54E-03	1.34E-04	1.49E-04	1.25E-02	1.97E-06	1.94E-04	8.99E-04	8.87E-04	2.09E-03	6.36E-02	1.22E-03	1.09E-03	3.57E-04	3.20E-06	1.13E-04	2.45E-04	2.13E-04	1.01E-04	2.87E-04	1.12E-04	6.33E-05	9.90E-05	3.99E-05	4.54E-06	1.97E-06	4.86E-06	4.69E-06	4.54E-06
Nuclide		Sr-90	Pu-238	Am-241	Pu-239	Cs-137	Pu-241	Cm-243	U-233	Co-60	Np-237	Ra-226	Ce-144	Ru-106	Eu-154	Ni-63	Eu-152	Ru-103	Sb-125	Cm-242	Ag-110m	Zr-95	Np-95	Cs-134	Eu-155	Co-58	Ag-108m	Zn-65	Mn-54	Th-234	Pa-233	U-235	1129	U-238

If #DIV/0! occurs in the Fraction of Waste Profile Column or the Does Nuclide Meet Waste Profile? Column of Section III, the nuclide is not included on the current profile and needs to be added. Waste Classification Determination for mear surface disposal per 10 CFR \$61.55

Assume that Sr-90, Cs-137, and Ni-63 are major nuclides driving waste classification determination for Tank V-1, V-2, and V-3 wastes Table 2 limit (Ci/m³)

adionuclic Column 1 Column 2 2" heel and .25" residue of V-3 Sludge in a 10,000 gallon steel tank		33.5
.25*		
l and	0.2	7
hee	150 3.81E-02	1.20F-04
2 2.	e	_
Column	150	44
n 1	47	
Colum	0.0	-
Radionuclic	Sr-90	Ce-137

1.20E-04	7.57E-06	0.95	0.00
44	7.0		
1	3.5	Fractions:	Fractions:
		of	οĘ
		Sum	Sum
_		æ	m
Cs-137	Ni-63	Class	Class

Class A

12:33 PM

x y 652 35.9 0.038 0.00206

Attachment 4

Volume and Weight Calculation for 4 and 6 Inch Pipe

WES!	TAN.
MANAGERS	DESIGNERS/CONSULTANTS

SHEET	22	a f	2	7
SHEEL	0	OI	α	/

	MANAGERS	DESIGNERS/CONSULTANTS	SHEET <u>22</u> of <u>2</u>
CLIENT/SUBJECT		,	W.O. NO
TASK DESCRIPTION Determine	Tipe w	ts (CF	TASK NO
PREPARED BY PLESHIAN	_ DEPT	DATE 9/24/01	APPROVED BY
MATH CHECK BY			
METHOD REV. BY	_ DEPT	DATE	DEPTDATE
1. Determine weight	t pley in	view it to	e little 4"
1. Patermine weight and is to	istless in	el Pize	
the state of the s			
· Assum	e ite	- 14" Thick	
		•	
A= T (R2 V2)		TT (Dr. 12	- `
		11 (1) -3	
		4	
	7		
	F		
•	Te	1/4"	
		7	
Demising or STAIN	less S.	heil is A9	6#/cm (2 70°C
,			/ + 0 0 0
USE .	495 4/0	. F.,	
4" Pipe			
` \ \	_		
A= 17 ((4:1)	(F) = (4)	$z^{\prime\prime}$ = ρ 117	< E
F. (1)	12/	, - 2011	
	,	,	
X 1 FT + 495	# CF =	5.55 4/4	<u>:</u>
G"PR			•
-(167	N= 167	7 011.5	, E
$A = \frac{11}{4} \left(\left(\frac{6.3}{12} \right)^{\frac{1}{2}} \right)$	一(元)	/ = 102	
x 1 + 495 #/	CF =	B. 67 "/LF	

RFW 10-05-003/A-5/85 512-5630

 $A = \frac{17}{4} \left(\frac{4}{12} \right)^{2} - \frac{3.75}{12} \right)^{2} = .0106 \text{ St}$ $WIT = \left(\frac{4}{12} \right)^{2} - \frac{3.75}{12} = .83 \text{ He/L} \text{ St. intimum dian}$ $A = \frac{17}{4} \left(\frac{6}{12} \right)^{2} - \frac{5.75}{12} = 0.160 \text{ St}$

UT= 12.16 173 = 1.25 #/LF

RFW 10-05-003/A-5/85

Attachment 5

Volume and Weight of V-Tanks and Contamination Prior to Removal from the Ground

	7/		7	_
SHEET	22	of	<u>~</u>	_/

CLIENT/SUBJECT	MANAGERS V	DESIGNERS:CONSULTANTS	W.O. NO.	
TASK DESCRIPTION Rete	colons miss	1 TANK	TASK N	0
PREPARED BY 18 (25H)	DEPT	DATE	2401 APF	ROVED BY
MATH CHECK BY	DEPT	DATE		
**** *********** ** ** ** ** ** ** ** *	DEPT	A CONTRACTOR OF A CONTRACTOR	DEPT	_DATE
Retermine	ur 2/3	ANLS	en en en en en en en en en en en en en e	
			Investment in	
Pia 1				
VIT I	O '-' 0'			
· · · · · · · · · · · · · · · · · · ·	9'-6"			
Thicknes	· 1/4 "			
A= T(5-0	21 - 5	× 19.5 ×	- 1278t/	LF X4 95 4/CT
	WT- 63	<u>بل</u> ام س		
	W1- 67	21.5		
			:	
cut trank end	>			
Z x \0'	DIAXT	x ·25 x	495- 64	1.6
TOTAL	wt / T	ANK =	6975.12	
ADO & RIC	see pipes, (TAURS, h	minhe	200 1/2

MATH CHECK BY DEPT DATE	OVED BY
MATH CHECK BY	
METHOD REV. BY DEPT DATE DEPT	DATE
	DATE
Determine ut & Continuation remaining in	TANKS
As Çurfaces Contrimination & lee	
- Asime 11' of Contamnation on	teru or
- Arions Zor - Ludy " BATON E	Lille
Caused to remared	
DIAE 10' Assum density of 78 4.	10 - 10 mm
L- 1951	······································
A- TT (52 - (59.75) = .653 SF	
X 19.5' X 70 t/CR = 993 # Contamination	ຄ ຄ\າ
TANK	
A- TY2 () ()	
Z Y Y Z Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	

CLIENT/SUBJECT	TANKS		W.O. NO	O
TASK DESCRIPTION			TASK	NO
PREPARED BY Bleeding	DEPT	DATE TIZETOL	AF	PROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	DATE
ARea	3 Segment	7		
			÷1 ·	
	0 V2 S	6 vs.		
36	7			
0 = 1	Bo- Z Sic	^-(\frac{\fin}}}}}}{\frac}\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\fra		
			* * *	
:	2 - 100			
	30 - 150.30	7 :		
	29. 67°	and the second s		
			•	
= 3.4 x Z	5 × 29.67	- 25 Sin	24.67	
		7 · · · · · · · · · · · · · · · · · · ·	. —	
			•	
٠.٠	(n	6.19	= .28	. SF
× 19.5	£\$ =	5.5 cf		
X 7.4	2 gol/CF	- 41.16	Sal	
	$\partial \gamma$			
			~ ^	
25 x 1	9 = 4	,29 # 95	Short	cK